Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nucleic Acids Res ; 50(2): 1162-1173, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34951459

RESUMO

CRISPR RNAs (crRNAs) that direct target DNA cleavage by Type V Cas12a nucleases consist of constant repeat-derived 5'-scaffold moiety and variable 3'-spacer moieties. Here, we demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by a Cas12a ortholog from Acidaminococcus sp. (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer moiety only. crRNAs split into separate scaffold and spacer RNAs catalyzed highly specific and efficient cleavage of target DNA by AsCas12a in vitro and in lysates of human cells. In addition to dsDNA target cleavage, AsCas12a programmed with split crRNAs also catalyzed specific ssDNA target cleavage and non-specific ssDNA degradation (collateral activity). V-A effector nucleases from Francisella novicida (FnCas12a) and Lachnospiraceae bacterium (LbCas12a) were also functional with split crRNAs. Thus, the ability of V-A effectors to use split crRNAs appears to be a general property. Though higher concentrations of split crRNA components are needed to achieve efficient target cleavage, split crRNAs open new lines of inquiry into the mechanisms of target recognition and cleavage and may stimulate further development of single-tube multiplex and/or parallel diagnostic tests based on Cas12a nucleases.


Assuntos
Acidaminococcus , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Acidaminococcus/genética , Acidaminococcus/metabolismo , Clivagem do DNA , Francisella/genética , Francisella/metabolismo , Edição de Genes
2.
J Biol Chem ; 295(19): 6509-6517, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32241913

RESUMO

The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9-gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9-gRNA, SaCas9-gRNA, and FnCas9-gRNA, respectively) and of three engineered SpCas9-gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a "beacon" assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9-gRNA binding to fluorescently labeled target DNA derivatives called "Cas9 beacons." We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9-gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.


Assuntos
Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas , Francisella/química , RNA Bacteriano/química , RNA Guia de Cinetoplastídeos/química , Staphylococcus aureus/química , Streptococcus pyogenes/química
3.
Mol Cell ; 47(5): 755-66, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22819324

RESUMO

The T7 phage-encoded small protein Gp2 is a non-DNA-binding transcription factor that interacts with the jaw domain of the Escherichia coli (Ec) RNA polymerase (RNAp) ß' subunit and inhibits transcriptionally proficient promoter-complex (RPo) formation. Here, we describe the high-resolution solution structure of the Gp2-Ec ß' jaw domain complex and show that Gp2 and DNA compete for binding to the ß' jaw domain. We reveal that efficient inhibition of RPo formation by Gp2 requires the amino-terminal σ(70) domain region 1.1 (R1.1), and that Gp2 antagonizes the obligatory movement of R1.1 during RPo formation. We demonstrate that Gp2 inhibits RPo formation not just by steric occlusion of the RNAp-DNA interaction but also through long-range antagonistic effects on RNAp-promoter interactions around the RNAp active center that likely occur due to repositioning of R1.1 by Gp2. The inhibition of Ec RNAp by Gp2 thus defines a previously uncharacterized mechanism by which bacterial transcription is regulated by a viral factor.


Assuntos
RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Escherichia coli/enzimologia , Proteínas Repressoras/metabolismo , DNA Bacteriano/química , DNA Bacteriano/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Conformação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
4.
Nucleic Acids Res ; 46(1): 431-441, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29165680

RESUMO

RNA polymerase (RNAP) is a major target of gene regulation. Thermus thermophilus bacteriophage P23-45 encodes two RNAP binding proteins, gp39 and gp76, which shut off host gene transcription while allowing orderly transcription of phage genes. We previously reported the structure of the T. thermophilus RNAP•σA holoenzyme complexed with gp39. Here, we solved the structure of the RNAP•σA holoenzyme bound with both gp39 and gp76, which revealed an unprecedented inhibition mechanism by gp76. The acidic protein gp76 binds within the RNAP cleft and occupies the path of the template DNA strand at positions -11 to -4, relative to the transcription start site at +1. Thus, gp76 obstructs the formation of an open promoter complex and prevents transcription by T. thermophilus RNAP from most host promoters. gp76 is less inhibitory for phage transcription, as tighter RNAP interaction with the phage promoters allows the template DNA to compete with gp76 for the common binding site. gp76 also inhibits Escherichia coli RNAP highlighting the template-DNA binding site as a new target site for developing antibacterial agents.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Thermus thermophilus/enzimologia , Proteínas Virais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Sítios de Ligação , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Interações Hospedeiro-Patógeno , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Thermus thermophilus/genética , Thermus thermophilus/virologia , Proteínas Virais/química , Proteínas Virais/genética
5.
Proc Natl Acad Sci U S A ; 114(21): 5443-5448, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484024

RESUMO

The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) endonuclease cleaves double-stranded DNA sequences specified by guide RNA molecules and flanked by a protospacer adjacent motif (PAM) and is widely used for genome editing in various organisms. The RNA-programmed Cas9 locates the target site by scanning genomic DNA. We sought to elucidate the mechanism of initial DNA interrogation steps that precede the pairing of target DNA with guide RNA. Using fluorometric and biochemical assays, we studied Cas9/guide RNA complexes with model DNA substrates that mimicked early intermediates on the pathway to the final Cas9/guide RNA-DNA complex. The results show that Cas9/guide RNA binding to PAM favors separation of a few PAM-proximal protospacer base pairs allowing initial target interrogation by guide RNA. The duplex destabilization is mediated, in part, by Cas9/guide RNA affinity for unpaired segments of nontarget strand DNA close to PAM. Furthermore, our data indicate that the entry of double-stranded DNA beyond a short threshold distance from PAM into the Cas9/single-guide RNA (sgRNA) interior is hindered. We suggest that the interactions unfavorable for duplex DNA binding promote DNA bending in the PAM-proximal region during early steps of Cas9/guide RNA-DNA complex formation, thus additionally destabilizing the protospacer duplex. The mechanism that emerges from our analysis explains how the Cas9/sgRNA complex is able to locate the correct target sequence efficiently while interrogating numerous nontarget sequences associated with correct PAMs.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , DNA/metabolismo , Endonucleases/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteína 9 Associada à CRISPR , Escherichia coli
6.
RNA Biol ; 16(4): 413-422, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30022698

RESUMO

Target binding by CRISPR-Cas ribonucleoprotein effectors is initiated by the recognition of double-stranded PAM motifs by the Cas protein moiety followed by destabilization, localized melting, and interrogation of the target by the guide part of CRISPR RNA moiety. The latter process depends on seed sequences, parts of the target that must be strictly complementary to CRISPR RNA guide. Mismatches between the target and CRISPR RNA guide outside the seed have minor effects on target binding, thus contributing to off-target activity of CRISPR-Cas effectors. Here, we define the seed sequence of the Type V Cas12b effector from Bacillus thermoamylovorans. While the Cas12b seed is just five bases long, in contrast to all other effectors characterized to date, the nucleotide base at the site of target cleavage makes a very strong contribution to target binding. The generality of this additional requirement was confirmed during analysis of target recognition by Cas12b effector from Alicyclobacillus acidoterrestris. Thus, while the short seed may contribute to Cas12b promiscuity, the additional specificity determinant at the site of cleavage may have a compensatory effect making Cas12b suitable for specialized genome editing applications.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Bacillus/genética , Sequência de Bases , DNA Bacteriano/genética , Escherichia coli , Biblioteca Gênica , Conformação de Ácido Nucleico
7.
Biochem J ; 474(24): 4053-4064, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101286

RESUMO

In bacterial RNA polymerase (RNAP), conserved region 3.2 of the σ subunit was proposed to contribute to promoter escape by interacting with the 5'-end of nascent RNA, thus facilitating σ dissociation. RNAP activity during transcription initiation can also be modulated by protein factors that bind within the secondary channel and reach the enzyme active site. To monitor the kinetics of promoter escape in real time, we used a molecular beacon assay with fluorescently labeled σ70 subunit of Escherichia coli RNAP. We show that substitutions and deletions in σ region 3.2 decrease the rate of promoter escape and lead to accumulation of inactive complexes during transcription initiation. Secondary channel factors differentially regulate this process depending on the promoter and mutations in σ region 3.2. GreA generally increase the rate of promoter escape; DksA also stimulates promoter escape on certain templates, while GreB either stimulates or inhibits this process depending on the template. When observed, the stimulation of promoter escape correlates with the accumulation of stressed transcription complexes with scrunched DNA, while changes in the RNA 5'-end structure modulate promoter clearance. Thus, the initiation-to-elongation transition is controlled by a complex interplay between RNAP-binding protein factors and the growing RNA chain.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator sigma/metabolismo , Elongação da Transcrição Genética/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Estrutura Secundária de Proteína , Fator sigma/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética
8.
Nucleic Acids Res ; 44(6): 2837-45, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26945042

RESUMO

CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR-Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3'-terminal segments. This result implies that the 3'-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3'-terminal stem loops leads to reduced activity during genomic editing.


Assuntos
Bioensaio , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Oligonucleotídeos/metabolismo , RNA Guia de Cinetoplastídeos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Proteína 9 Associada à CRISPR , Endonucleases/genética , Endonucleases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Dados de Sequência Molecular , Oligonucleotídeos/síntese química , Ligação Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/genética
9.
Nucleic Acids Res ; 44(22): 10849-10861, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27738137

RESUMO

The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo Shortened crRNAs assemble into altered-stoichiometry Cascade effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multisubunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.


Assuntos
Escherichia coli/genética , Adaptação Fisiológica , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Interferência de RNA , RNA Bacteriano/fisiologia
10.
Methods ; 86: 19-26, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25956222

RESUMO

The molecular details of formation of transcription initiation complex upon the interaction of bacterial RNA polymerase (RNAP) with promoters are not completely understood. One way to address this problem is to understand how RNAP interacts with different parts of promoter DNA. A recently developed fluorometric RNAP molecular beacon assay allows one to monitor the RNAP interactions with various unlabeled DNA probes and quantitatively characterize partial RNAP-promoter interactions. This paper focuses on methodological aspects of application of this powerful assay to study the mechanism of transcription initiation complex formation by Escherichia coli RNA polymerase σ(70) holoenzyme and its regulation by bacterial and phage encoded factors.


Assuntos
Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Fluorometria , Modelos Moleculares , Ligação Proteica
11.
Nucleic Acids Res ; 42(7): 4294-305, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24482445

RESUMO

Bacteriophages (phages) appropriate essential processes of bacterial hosts to benefit their own development. The multisubunit bacterial RNA polymerase (RNAp) enzyme, which catalyses DNA transcription, is targeted by phage-encoded transcription regulators that selectively modulate its activity. Here, we describe the structural and mechanistic basis for the inhibition of bacterial RNAp by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10. We reveal that P7 uses a two-step mechanism to simultaneously interact with the catalytic ß and ß' subunits of the bacterial RNAp and inhibits transcription initiation by inducing the displacement of the σ(70)-factor on initial engagement of RNAp with promoter DNA. The new mode of interaction with and inhibition mechanism of bacterial RNAp by P7 underscore the remarkable variety of mechanisms evolved by phages to interfere with host transcription.


Assuntos
Bacteriófagos/fisiologia , RNA Polimerases Dirigidas por DNA/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Iniciação da Transcrição Genética , Proteínas Virais/química , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fator sigma/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo
12.
Nucleic Acids Res ; 41(15): 7276-85, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771146

RESUMO

RNA polymerase (RNAP) melts promoter DNA to form transcription-competent open promoter complex (RPo). Interaction of the RNAP σ subunit with non-template strand bases of a conserved -10 element (consensus sequence T-12A-11T-10A-9A-8T-7) is an important source of energy-driving localized promoter melting. Here, we used an RNAP molecular beacon assay to investigate interdependencies of RNAP interactions with -10 element nucleotides. The results reveal a strong cooperation between RNAP interactions with individual -10 element non-template strand nucleotides and indicate that recognition of the -10 element bases occurs only when free energy of the overall RNAP -10 element binding reaches a certain threshold level. The threshold-like mode of the -10 element recognition may be related to the energetic cost of attaining a conformation of the -10 element that is recognizable by RNAP. The RNAP interaction with T/A-12 base pair was found to be strongly stimulated by RNAP interactions with other -10 element bases and with promoter spacer between the -10 and -35 promoter elements. The data also indicate that unmelted -10 promoter element can impair RNAP interactions with promoter DNA upstream of the -11 position. We suggest that cooperativity and threshold effects are important factors guiding the dynamics and selectivity of RPo formation.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Pareamento de Bases , Sequência Consenso , DNA Bacteriano/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Transferência de Energia , Escherichia coli/enzimologia , Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Mapeamento de Interação de Proteínas , Transcrição Gênica
13.
Nucleic Acids Res ; 40(22): 11352-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23087380

RESUMO

Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C. Here, we used a fluorometric RNAP molecular beacon assay to discern partial RNAP-promoter interactions. We quantitatively compared the strength of E. coli and Taq RNAPs partial interactions with the -10, -35 and UP promoter elements; the TG motif of the extended -10 element; the discriminator and the downstream duplex promoter segments. We found that compared with Taq RNAP, E. coli RNAP has much higher affinity only to the UP element and the downstream promoter duplex. This result indicates that the difference in stability between E. coli and Taq promoter complexes is mainly determined by the differential strength of core RNAP-DNA contacts. We suggest that the relative weakness of Taq RNAP interactions with DNA downstream of the transcription start point is the major reason of low stability and temperature sensitivity of promoter complexes formed by this enzyme.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Thermus/enzimologia , Iniciação da Transcrição Genética , Sequência de Bases , DNA/química , DNA/metabolismo , Sondas de DNA , DNA de Cadeia Simples/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Fluorometria/métodos , Temperatura Alta , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Fator sigma/química , Especificidade da Espécie , Thermus/genética
14.
J Biol Chem ; 286(25): 22600-8, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21525530

RESUMO

Nucleation of promoter melting in bacteria is coupled with RNA polymerase (RNAP) binding to a conserved -10 promoter element located at the upstream edge of the transcription bubble. The mechanism of downstream propagation of the transcription bubble to include the transcription start site is unclear. Here we introduce new model downstream fork junction promoter fragments that specifically bind RNAP and mimic the downstream segment of promoter complexes. We demonstrate that RNAP binding to downstream fork junctions is coupled with DNA melting around the transcription start point. Consequently, certain downstream fork junction probes can serve as transcription templates. Using a protein beacon fluorescent method, we identify structural determinants of affinity and transcription activity of RNAP-downstream fork junction complexes. Measurements of RNAP interaction with double-stranded promoter fragments reveal that the strength of RNAP interactions with downstream DNA plays a critical role in promoter opening and that the length of the downstream duplex must exceed a critical length for efficient formation of transcription competent open promoter complex.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Sequência de Bases , Sondas de DNA/genética , Sondas de DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Thermus/enzimologia
15.
J Biol Chem ; 286(1): 270-9, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20952386

RESUMO

Promoter recognition by RNA polymerase is a key point in gene expression and a target of regulation. Bacterial RNA polymerase binds promoters in the form of the holoenzyme, with the σ specificity subunit being primarily responsible for promoter recognition. Free σ, however, does not recognize promoter DNA, and it has been proposed that the intrinsic DNA binding ability is masked in free σ but becomes unmasked in the holoenzyme. Here, we use a newly developed fluorescent assay to quantitatively study the interactions of free σ(70) from Escherichia coli, the ß'-σ complex, and the σ(70) RNA polymerase (RNAP) holoenzyme with non-template strand of the open promoter complex transcription bubble in the context of model non-template oligonucleotides and fork junction templates. We show that σ(70), free or in the context of the holoenzyme, recognizes the -10 promoter element with the same efficiency and specificity. The result implies that there is no need to invoke a conformational change in σ for recognition of the -10 element in the single-stranded form. In the holoenzyme, weak but specific interactions of σ are increased by contacts with DNA downstream of the -10 element. We further show that region 1 of σ(70) is required for stronger interaction with non-template oligonucleotides in the holoenzyme but not in free σ. Finally, we show that binding of the ß' RNAP subunit is sufficient to allow specific recognition of the TG motif of the extended -10 promoter element by σ(70). The new fluorescent assay, which we call a protein beacon assay, will be instrumental in quantitative dissection of fine details of RNAP interactions with promoters.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Fluorometria/métodos , Regiões Promotoras Genéticas/genética , Fator sigma/metabolismo , Sequência de Bases , Domínio Catalítico , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , Holoenzimas/química , Holoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , Fator sigma/química , Especificidade por Substrato
16.
Viruses ; 14(3)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336962

RESUMO

Salmonella enterica serovar Newport bacteriophage 7-11 shares 41 homologous ORFs with Escherichia coli phage phiEco32, and both phages encode a protein similar to bacterial RNA polymerase promoter specificity σ subunit. Here, we investigated the temporal pattern of 7-11 gene expression during infection and compared it to the previously determined transcription strategy of phiEco32. Using primer extension and in vitro transcription assays, we identified eight promoters recognized by host RNA polymerase holoenzyme containing 7-11 σ subunit SaPh711_gp47. These promoters are characterized by a bipartite consensus, GTAAtg-(16)-aCTA, and are located upstream of late phage genes. While dissimilar from single-element middle and late promoters of phiEco32 recognized by holoenzymes formed by the phi32_gp36 σ factor, the 7-11 late promoters are located at genome positions similar to those of phiEco32 middle and late promoters. Two early 7-11 promoters are recognized by the RNA polymerase holoenzyme containing the host primary σ70 factor. Unlike the case of phiEco32, no shut-off of σ70-dependent transcription is observed during 7-11 infection and there are no middle promoters. These differences can be explained by the fact that phage 7-11 does not encode a homologue of phi32_gp79, an inhibitor of host and early phage transcription and an activator of transcription by the phi32_gp36-holoenzyme.


Assuntos
Bacteriófagos , Fator sigma , Bacteriófagos/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica , Holoenzimas/genética , Holoenzimas/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
17.
Proc Natl Acad Sci U S A ; 105(39): 14820-5, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18787125

RESUMO

Rifamycin antibacterial agents inhibit bacterial RNA polymerase (RNAP) by binding to a site adjacent to the RNAP active center and preventing synthesis of RNA products >2-3 nt in length. Recently, Artsimovitch et al. [(2005) Cell 122:351-363] proposed that rifamycins function by allosteric modulation of binding of Mg(2+) to the RNAP active center and presented three lines of biochemical evidence consistent with this proposal. Here, we show that rifamycins do not affect the affinity of binding of Mg(2+) to the RNAP active center, and we reassess the three lines of biochemical evidence, obtaining results not supportive of the proposal. We conclude that rifamycins do not function by allosteric modulation of binding of Mg(2+) to the RNAP active center.


Assuntos
Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Magnésio/metabolismo , Rifamicinas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/genética , Mutação
18.
Viruses ; 12(8)2020 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722583

RESUMO

The Escherichia coli bacteriophage T5 has three temporal classes of genes (pre-early, early, and late). All three classes are transcribed by host RNA polymerase (RNAP) containing the σ70 promoter specificity subunit. Molecular mechanisms responsible for the switching of viral transcription from one class to another remain unknown. Here, we find the product of T5 gene 026 (gpT5.026) in RNAP preparations purified from T5-infected cells and demonstrate in vitro its tight binding to E. coli RNAP. While proteins homologous to gpT5.026 are encoded by all T5-related phages, no similarities to proteins with known functions can be detected. GpT5.026 binds to two regions of the RNAP ß subunit and moderately inhibits RNAP interaction with the discriminator region of σ70-dependent promoters. A T5 mutant with disrupted gene 026 is viable, but the host cell lysis phase is prolongated and fewer virus particles are produced. During the mutant phage infection, the number of early transcripts increases, whereas the number of late transcripts decreases. We propose that gpT5.026 is part of the regulatory cascade that orchestrates a switch from early to late bacteriophage T5 transcription.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Colífagos/genética , RNA Polimerases Dirigidas por DNA/genética , Proteínas Virais/genética , Proteínas de Transporte/isolamento & purificação , Regulação Viral da Expressão Gênica , Ligação Proteica , Transcrição Gênica
19.
Methods Mol Biol ; 543: 403-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19378179

RESUMO

Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking - involving rapid-quench-flow mixing and pulsed-laser irradiation - permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes.


Assuntos
Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/efeitos da radiação , DNA/metabolismo , Escherichia coli/genética , Biologia Molecular/métodos , Proteínas/metabolismo , Transcrição Gênica/genética , Animais , DNA/química , DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Cinética , Luz , Proteínas/química
20.
Methods Enzymol ; 616: 337-363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691650

RESUMO

CRISPR-Cas systems protect prokaryotic cells from invading phages and plasmids by recognizing and cleaving foreign nucleic acid sequences specified by CRISPR RNA spacer sequences. Several CRISPR-Cas systems have been widely used as tool for genetic engineering. In DNA-targeting CRISPR-Cas nucleoprotein effector complexes, the CRISPR RNA forms a hybrid with the complementary strand of foreign DNA, displacing the noncomplementary strand to form an R-loop. The DNA interrogation and R-loop formation involve several distinct steps the molecular details of which are not fully understood. This chapter describes a recently developed fluorometric Cas beacon assay that may be used for measuring of specific affinity of various CRISPR-Cas complexes for unlabeled target DNA and model DNA probes. The Cas beacon approach also can provide a sensitive method for monitoring the kinetics of assembly of CRISPR-Cas complexes.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , Sondas de DNA/metabolismo , Fluorometria/métodos , RNA Guia de Cinetoplastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA