RESUMO
Severe deterioration of water quality in lakes, characterized by overabundance of algae and declining dissolved oxygen in the deep lake (DOB), was one of the ecological crises of the 20th century. Even with large reductions in phosphorus loading, termed "reoligotrophication," DOB and chlorophyll (CHL) have often not returned to their expected pre-20th-century levels. Concurrently, management of lake health has been confounded by possible consequences of climate change, particularly since the effects of climate are not neatly separable from the effects of eutrophication. Here, using Lake Geneva as an iconic example, we demonstrate a complementary alternative to parametric models for understanding and managing lake systems. This involves establishing an empirically-driven baseline that uses supervised machine learning to capture the changing interdependencies among biogeochemical variables and then combining the empirical model with a more conventional equation-based model of lake physics to predict DOB over decadal time-scales. The hybrid model not only leads to substantially better forecasts, but also to a more actionable description of the emergent rates and processes (biogeochemical, ecological, etc.) that drive water quality. Notably, the hybrid model suggests that the impact of a moderate 3°C air temperature increase on water quality would be on the same order as the eutrophication of the previous century. The study provides a template and a practical path forward to cope with shifts in ecology to manage environmental systems for non-analogue futures.
Assuntos
Lagos , Qualidade da Água , Ecossistema , Monitoramento Ambiental , Eutrofização , Lagos/química , Fósforo/análise , SuíçaRESUMO
Large greenhouse gas emissions occur via the release of carbon dioxide (CO2) and methane (CH4) from the surface layer of lakes. Such emissions are modeled from the air-water gas concentration gradient and the gas transfer velocity (k). The links between k and the physical properties of the gas and water have led to the development of methods to convert k between gases through Schmidt number normalization. However, recent observations have found that such normalization of apparent k estimates from field measurements can yield different results for CH4 and CO2. We estimated k for CO2 and CH4 from measurements of concentration gradients and fluxes in four contrasting lakes and found consistently higher (on an average 1.7 times) normalized apparent k values for CO2 than CH4. From these results, we infer that several gas-specific factors, including chemical and biological processes within the water surface microlayer, can influence apparent k estimates. We highlight the importance of accurately measuring relevant air-water gas concentration gradients and considering gas-specific processes when estimating k.
Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise , Lagos/química , Gases , Gases de Efeito Estufa/análise , Metano/análise , ÁguaRESUMO
The hydrodynamics within small boreal lakes have rarely been studied, yet knowing whether turbulence at the air-water interface and in the water column scales with metrics developed elsewhere is essential for computing metabolism and fluxes of climate-forcing trace gases. We instrumented a humic, 4.7 ha, boreal lake with two meteorological stations, three thermistor arrays, an infrared (IR) camera to quantify surface divergence, obtained turbulence as dissipation rate of turbulent kinetic energy (ε) using an acoustic Doppler velocimeter and a temperature-gradient microstructure profiler, and conducted chamber measurements for short periods to obtain fluxes and gas transfer velocities (k). Near-surface ε varied from 10-8 to 10-6 m2 s-3 for the 0-4 m s-1 winds and followed predictions from Monin-Obukhov similarity theory. The coefficient of eddy diffusivity in the mixed layer was up to 10-3 m2 s-1 on the windiest afternoons, an order of magnitude less other afternoons, and near molecular at deeper depths. The upper thermocline upwelled when Lake numbers (L N ) dropped below four facilitating vertical and horizontal exchange. k computed from a surface renewal model using ε agreed with values from chambers and surface divergence and increased linearly with wind speed. Diurnal thermoclines formed on sunny days when winds were < 3 m s-1, a condition that can lead to elevated near-surface ε and k. Results extend scaling approaches developed in the laboratory and for larger water bodies, illustrate turbulence and k are greater than expected in small wind-sheltered lakes, and provide new equations to quantify fluxes.
RESUMO
Biotic communities are shaped by adaptations from generations of exposure to selective pressures by recurrent and often infrequent events. In large rivers, floods can act as significant agents of change, causing considerable physical and biotic disturbance while often enhancing productivity and diversity. We show that the relative balance between these seemingly divergent outcomes can be explained by the rhythmicity, or predictability of the timing and magnitude, of flood events. By analyzing biological data for large rivers that span a gradient of rhythmicity in the Neotropics and tropical Australia, we find that systems with rhythmic annual floods have higher-fish species richness, more stable avian populations, and elevated rates of riparian forest production compared with those with arrhythmic flood pulses. Intensification of the hydrological cycle driven by climate change, coupled with reductions in runoff due to water extractions for human use and altered discharge from impoundments, is expected to alter the hydrologic rhythmicity of floodplain rivers with significant consequences for both biodiversity and productivity.
Assuntos
Biodiversidade , Aves/fisiologia , Ecossistema , Peixes/fisiologia , Inundações , Florestas , Animais , Austrália , Mudança Climática , México , Rios , América do SulRESUMO
We coupled measurements of beach pore water residence time, determined using the radioisotopic tracer (222)Rn, with dissolved carbon and nitrogen chemistry to identify the temporal evolution and variability of dissolved inorganic nitrogen (DIN) concentrations in beach pore water along the Santa Barbara, California coastline. Pore water dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) ratios (DOC:TDN) were negative exponentially correlated with residence time. Mean pore water residence times were positively correlated with tidal amplitudes, and ranged from 4.4 to 6.4 days. We used this range in mean residence times to model radon residence time distributions (RTDs), and integrated them with modeled DIN vs residence time relationships (DIN-temporal evolution, or DIN-te curves) to derive volume-weighted mean (VWM) DIN concentrations. We observed 1.2-fold and 5.2-fold differences (20% and 420% increases) in VWM DIN concentrations over the range in modeled RTDs and DIN-te curves, respectively, and a maximum 6.4-fold difference (540% increase) in VWM DIN concentrations for an interactive shift in the RTD and the DIN-te curve. Our study suggests that accounting for temporal variability in the RTD and DIN concentration of pore water is necessary to obtain more accurate estimates of DIN delivery to coastal oceans.
Assuntos
Monitoramento Ambiental/métodos , Substâncias Húmicas/análise , Nitrogênio/análise , Radônio/química , Água do Mar/química , Poluentes Químicos da Água/análise , Praias , California , Modelos Teóricos , Nitrogênio/químicaRESUMO
We investigated multiple lines of evidence to determine if observed and paleo-reconstructed changes in acid neutralizing capacity (ANC) in Sierra Nevada lakes were the result of changes in 20th century atmospheric deposition. Spheroidal carbonaceous particles (SCPs) (indicator of anthropogenic atmospheric deposition) and biogenic silica and δ(13)C (productivity proxies) in lake sediments, nitrogen and sulfur emission inventories, climate variables, and long-term hydrochemistry records were compared to reconstructed ANC trends in Moat Lake. The initial decline in ANC at Moat Lake occurred between 1920 and 1930, when hydrogen ion deposition was approximately 74 eq ha(-1) yr(-1), and ANC recovered between 1970 and 2005. Reconstructed ANC in Moat Lake was negatively correlated with SCPs and sulfur dioxide emissions (p = 0.031 and p = 0.009). Reconstructed ANC patterns were not correlated with climate, productivity, or nitrogen oxide emissions. Late 20th century recovery of ANC at Moat Lake is supported by increasing ANC and decreasing sulfate in Emerald Lake between 1983 and 2011 (p < 0.0001). We conclude that ANC depletion at Moat and Emerald lakes was principally caused by acid deposition, and recovery in ANC after 1970 can be attributed to the United States Clean Air Act.
Assuntos
Ácidos/química , Atmosfera/química , Lagos/química , California , Carbono/química , Isótopos de Carbono , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Material Particulado/química , Análise de Componente Principal , Análise de Regressão , Estações do Ano , Dióxido de Silício/análise , Neve/química , Temperatura , Fatores de TempoRESUMO
Macrophyte net primary productivity (NPP) is a significant but understudied component of the carbon budget in large Amazonian floodplains. Annual NPP is determined by the interaction between stem elongation (vertical growth) and plant cover changes (horizontal expansion), each affected differently by flood duration and amplitude. Therefore, hydrological changes as predicted for the Amazon basin could result in significant changes in annual macrophyte NPP. This study investigates the responses of macrophyte horizontal expansion and vertical growth to flooding variability, and its possible effects on the contribution of macrophytes to the carbon budget of Amazonian floodplains. Monthly macrophyte cover was estimated using satellite imagery for the 2003-2004 and 2004-2005 hydrological years, and biomass was measured in situ between 2003 and 2004. Regression models between macrophyte variables and river-stage data were used to build a semiempirical model of macrophyte NPP as a function of water level. Historical river-stage records (1970-2011) were used to simulate variations in NPP, as a function of annual flooding. Vertical growth varied by a factor of ca. 2 over the simulated years, whereas minimum and maximum annual cover varied by ca. 3.5 and 1.5, respectively. Results suggest that these processes act in opposite directions to determine macrophyte NPP, with larger sensitivity to changes in vertical growth, and thus maximum flooding levels. Years with uncommonly large flooding amplitude resulted in the highest NPP values, as both horizontal expansion and vertical growth were enhanced under these conditions. Over the simulated period, annual NPP varied by ca. 1.5 (1.06-1.63 TgC yr(-1) ). A small increasing trend in flooding amplitude, and by extension NPP, was observed for the studied period. Variability in growth rates caused by local biotic and abiotic factors, and the lack of knowledge on macrophyte physiological responses to extreme hydrological conditions remain the major sources of uncertainty.
Assuntos
Inundações , Modelos Teóricos , Desenvolvimento Vegetal , Brasil , Mudança Climática , Simulação por Computador , Rios , Imagens de SatélitesRESUMO
Groundwater behaviors in lake-floodplain systems are dynamic and complex; in particular, the role of groundwater flux in regulating lake water storage subject to strong seasonal variation is not well understood. This study addresses the contribution of groundwater flux in a large floodplain system (Poyang Lake, China), with focus on quantifying the groundwater-lake interactions at multiple time scales in high rainfall (2010) and low rainfall (2011) years using a groundwater flow model (MODFLOW). Simulated results revealed that the unconfined aquifer received approximately 8 % of the annual rainfall as groundwater recharge. Fluctuations in shallow groundwater and lake water level reflected hydraulic synchronization and hysteresis. Additionally, the diurnal variability in the groundwater-lake exchange fluxes was subject to dynamic and bidirectional patterns, and a time lag between the water exchange and rainfall was also found. For 2010 and 2011, the monthly net flux of lake infiltration into groundwater was 1.5-10.0 mm and 0.1-6.0 mm and groundwater exfiltration into lake was 1.3-9.5 mm and 0.4-2.2 mm, respectively, demonstrating a significant variation of the exchange magnitude and direction. In particular, we found that groundwater exfiltration contributed up to 55 % of lake storage change in February of 2011. The outcomes from this study indicate that groundwater can be a major component of the Poyang Lake's water balance, which suggests an important role of groundwater in regulating the lake water storage and perhaps other flood pulse systems.
Assuntos
Água Subterrânea , Lagos , Hidrologia , Estações do Ano , Água , ChinaRESUMO
Proposed hydropower dams at more than 350 sites throughout the Amazon require strategic evaluation of trade-offs between the numerous ecosystem services provided by Earth's largest and most biodiverse river basin. These services are spatially variable, hence collective impacts of newly built dams depend strongly on their configuration. We use multiobjective optimization to identify portfolios of sites that simultaneously minimize impacts on river flow, river connectivity, sediment transport, fish diversity, and greenhouse gas emissions while achieving energy production goals. We find that uncoordinated, dam-by-dam hydropower expansion has resulted in forgone ecosystem service benefits. Minimizing further damage from hydropower development requires considering diverse environmental impacts across the entire basin, as well as cooperation among Amazonian nations. Our findings offer a transferable model for the evaluation of hydropower expansion in transboundary basins.
RESUMO
As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach "tipping points," at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.
RESUMO
Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
RESUMO
Hundreds of dams have been proposed throughout the Amazon basin, one of the world's largest untapped hydropower frontiers. While hydropower is a potentially clean source of renewable energy, some projects produce high greenhouse gas (GHG) emissions per unit electricity generated (carbon intensity). Here we show how carbon intensities of proposed Amazon upland dams (median = 39 kg CO2eq MWh-1, 100-year horizon) are often comparable with solar and wind energy, whereas some lowland dams (median = 133 kg CO2eq MWh-1) may exceed carbon intensities of fossil-fuel power plants. Based on 158 existing and 351 proposed dams, we present a multi-objective optimization framework showing that low-carbon expansion of Amazon hydropower relies on strategic planning, which is generally linked to placing dams in higher elevations and smaller streams. Ultimately, basin-scale dam planning that considers GHG emissions along with social and ecological externalities will be decisive for sustainable energy development where new hydropower is contemplated.
RESUMO
We investigated plankton metabolism and its influence on carbon dioxide (CO2) dynamics in a central Amazon floodplain lake (Janauacá, 3°23' S, 60°18' W) from September 2015 to May 2016, including a period with exceptional drought. We made diel measurements of CO2 emissions to the atmosphere with floating chambers and depth profiles of temperature and CO2 partial pressure (pCO2) at two sites with differing wind exposure and proximity to vegetated habitats. Dissolved oxygen (DO) concentrations were monitored continuously during day and night in clear and dark chambers with autonomous optical sensors to evaluate plankton metabolism. Overnight community respiration (CR), and gross primary production (GPP) rates were higher in clear chambers and positively correlated with chlorophyll-a (Chl-a). CO2 air-water fluxes varied over 24-h periods with changes in thermal structure and metabolism. Most net daily CO2 fluxes during low water and mid-rising water at the wind exposed site were into the lake as a result of high rates of photosynthesis. All other measurements indicated net daily release to the atmosphere. Average GPP rates (6.8gCm-2d-1) were high compared with other studies in Amazon floodplain lakes. The growth of herbaceous plants on exposed sediment during an exceptional drought led to large carbon inputs when these areas were flooded, enhancing CR, pCO2, and CO2 fluxes. During the period when the submerged herbaceous vegetation decayed phytoplankton abundance increased and photosynthetic uptake of CO2 occurred. While planktonic metabolism was often autotrophic (GPP:CR>1), CO2 out-gassing occurred during most periods investigated indicating other inputs of carbon such as sediments or soils and wetland plants.
RESUMO
Increased energy demand has led to plans for building many new dams in the western Amazon, mostly in the Andean region. Historical data and mechanistic scenarios are used to examine potential impacts above and below six of the largest dams planned for the region, including reductions in downstream sediment and nutrient supplies, changes in downstream flood pulse, changes in upstream and downstream fish yields, reservoir siltation, greenhouse gas emissions and mercury contamination. Together, these six dams are predicted to reduce the supply of sediments, phosphorus and nitrogen from the Andean region by 69, 67 and 57% and to the entire Amazon basin by 64, 51 and 23%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These effects will be greatest near the dams and extend to the lowland floodplains. Attenuation of the downstream flood pulse is expected to alter the survival, phenology and growth of floodplain vegetation and reduce fish yields below the dams. Reservoir filling times due to siltation are predicted to vary from 106-6240 years, affecting the storage performance of some dams. Total CO2 equivalent carbon emission from 4 Andean dams was expected to average 10 Tg y-1 during the first 30 years of operation, resulting in a MegaWatt weighted Carbon Emission Factor of 0.139 tons C MWhr-1. Mercury contamination in fish and local human populations is expected to increase both above and below the dams creating significant health risks. Reservoir fish yields will compensate some downstream losses, but increased mercury contamination could offset these benefits.
Assuntos
Ecossistema , América do SulRESUMO
Temporal variability of ecological systems continues to receive theoretical and empirical attention but remains inadequately documented at low latitudes. Results of my comparative investigation of photosynthetic rates of phytoplankton in 6 equatiorial African lakes and similar information from 20 South American, Asian and African lakes studied by others provide the data for an assessment of the range of seasonal variability (expressed as coefficients of variation, CV) among tropical lakes. Sampling intervals varied from 1 week to 3 months and usually spanned at least one year. Within Africa the coefficient of variation ranged from 15% to 61%, and among all the lakes the coefficient of variation ranged from 15% to 86%. The Spearman rank correlation coefficient of the CV's of photosynthesis versus latitude is 0.24 and is not significant at the 0.05 level.Coefficients of variation of photosynthetic rates of phytoplankton in a diverse set of 45 temperate and arctic lakes ranged from 29% to 155% and were significantly different from the set of 26 tropical lakes by the Mann-Whitney U test. When all 71 lakes are compared, the Spearman rank correlation coefficient of CV's of photosynthesis versus latitude is 0.71 and is significant at the 0.0005 level.Three temporal patterns were recognized among tropical lakes. Most tropical lakes exhibit pronounced seasonal fluctuations that usually correspond with variations in rainfall, river discharges or vertical mixing. A second pattern occurs in lakes with muted fluctuations (coefficient of variation less than 20%) in which diel changes often exceed month to month changes. A third pattern is distinguished by an abrupt change from one persistent algal assemblage (i.e., extant for at least 10 generations) and level of photosynthetic activity to another persistent condition.
RESUMO
Phytoplankton abundance in tropical lakes is more often judged to be limited by nitrogen than phosphorus, but seldom does the evidence include controlled enrichments of natural populations. In January 1980 we performed the first experimental fertilization in an equatorial African soda lake, Lake Sonachi, a small, meromictic volcanic crater lake in Kenya. During our study the natural phytoplankton abundance was ca. 80 µg chl a/l, and the euphotic zone PO4 and NH4 concentrations were less than 0.5 µM. In the monimolimnion PO4 reached 180 µM and NH4 reached 4,600 µM. Replicate polyethylene cylinders (5 m long, 1.2 m3) were enriched to attain 10 µM PO4 and 100 µM NH4. Phytoplankton responses were measured as chlorophyll, cell counts and particulate N, P and C. After two days, the chlorophyll increase in the P treatment was significantly higher than the control (P<0.01) while the N treatment was not. After five days the molar N/P ratio of seston was the same in the N treatment and control (23) but only 6 in the P treatment. The molar N/P ratio of seston in an unenriched Lake Sonachi sample was 21 and in samples from Lakes Bogoria and Elmenteita, two shallow soda lakes in Kenya, the ratios were 12 and 70 respectively. We conclude that limitation of phytoplankton abundance by phosphorus can occur even in some tropical African soda lakes.
RESUMO
The significance of the transport of nutrient-rich hypolimnetic water via the benthic boundary layer (BBL) to the productivity of Mono Lake was studied using a coupled hydrodynamic and ecological model validated against field data. The coupled model enabled us to differentiate between the role of biotic components and hydrodynamic forcing on the internal recycling of nutrients necessary to sustain primary productivity. A 4-year period (1991-1994) was simulated in which recycled nutrients from zooplankton excretion and bacterially-mediated mineralization exceeded sediment fluxes as the dominant source for primary productivity. Model outputs indicated that BBL transport was responsible for a 53% increase in the flux of hypolimnetic ammonium to the photic zone during stratification with an increase in primary production of 6% and secondary production of 5%. Although the estimated impact of BBL transport on the productivity of Mono Lake was not large, significant nutrient fluxes were simulated during periods when BBL transport was most active.
RESUMO
Aquatic vegetation is an important component of wetland and coastal ecosystems, playing a key role in the ecological functions of these environments. Surveys of macrophyte communities are commonly hindered by logistic problems, and remote sensing represents a powerful alternative, allowing comprehensive assessment and monitoring. Also, many vegetation characteristics can be estimated from reflectance measurements, such as species composition, vegetation structure, biomass, and plant physiological parameters. However, proper use of these methods requires an understanding of the physical processes behind the interaction between electromagnetic radiation and vegetation, and remote sensing of aquatic plants have some particular difficulties that have to be properly addressed in order to obtain successful results. The present paper reviews the theoretical background and possible applications of remote sensing techniques to the study of aquatic vegetation.
Assuntos
Sistemas de Informação Geográfica , Plantas , ÁguaRESUMO
Terrestrial ecosystems in the humid tropics play a potentially important but presently ambiguous role in the global carbon cycle. Whereas global estimates of atmospheric CO2 exchange indicate that the tropics are near equilibrium or are a source with respect to carbon, ground-based estimates indicate that the amount of carbon that is being absorbed by mature rainforests is similar to or greater than that being released by tropical deforestation (about 1.6 Gt C yr-1). Estimates of the magnitude of carbon sequestration are uncertain, however, depending on whether they are derived from measurements of gas fluxes above forests or of biomass accumulation in vegetation and soils. It is also possible that methodological errors may overestimate rates of carbon uptake or that other loss processes have yet to be identified. Here we demonstrate that outgassing (evasion) of CO2 from rivers and wetlands of the central Amazon basin constitutes an important carbon loss process, equal to 1.2 +/- 0.3 Mg C ha-1 yr-1. This carbon probably originates from organic matter transported from upland and flooded forests, which is then respired and outgassed downstream. Extrapolated across the entire basin, this flux-at 0.5 Gt C yr-1-is an order of magnitude greater than fluvial export of organic carbon to the ocean. From these findings, we suggest that the overall carbon budget of rainforests, summed across terrestrial and aquatic environments, appears closer to being in balance than would be inferred from studies of uplands alone.
Assuntos
Atmosfera/química , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Água Doce/química , Clima Tropical , Brasil , Oceanos e Mares , Árvores/metabolismoRESUMO
Este artigo se propõe a apresentar exemplos de questões científicas que puderam ser respondidas no contexto do Projeto LBA (Large Sale Biosphere-Atmosphere Experiment in Amazonia) graças à contribuição de informações derivadas de sensoriamento remoto. Os métodos de sensoriamento remoto permitem integrar informações sobre os vários processos físicos e biológicos em diferentes escalas de tempo e espaço. Nesse artigo, são enfatizados aqueles avanços de conhecimento que jamais seriam alcançados sem a concorrência da informação derivada de sensoriamento.