Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(14): e2303136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37749947

RESUMO

This work investigates the effect of plasmonic gold nanoparticle (AuNP) size on the rate of thermal release of single-stranded oligonucleotides under femtosecond (fs)-pulsed laser irradiation sources. Contrary to the theoretical predictions that larger AuNPs (50-60 nm diameter) would produce the most solution heating and fastest DNA release, it is found that smaller AuNP diameters (25 nm) lead to faster dsDNA denaturation rates. Controlling for the pulse energy fluence, AuNP concentration, DNA loading density, and the distance from the AuNP surface finds the same result. These results imply that the solution temperature increases around the AuNP during fs laser pulse optical heating may not be the only significant influence on dsDNA denaturation, suggesting that direct energy transfer from the AuNP to the DNA (phonon-phonon coupling), which is increased as AuNPs decrease in size, may play a significant role.


Assuntos
Ouro , Nanopartículas Metálicas , Calefação , Lasers , DNA
2.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38230810

RESUMO

Scaffolded molecular networks are important building blocks in biological pigment-protein complexes, and DNA nanotechnology allows analogous systems to be designed and synthesized. System-environment interactions in these systems are responsible for important processes, such as the dissipation of heat and quantum information. This study investigates the role of nanoscale molecular parameters in tuning these vibronic system-environment dynamics. Here, genetic algorithm methods are used to obtain nanoscale parameters for a DNA-scaffolded chromophore network based on comparisons between its calculated and measured optical spectra. These parameters include the positions, orientations, and energy level characteristics within the network. This information is then used to compute the dynamics, including the vibronic population dynamics and system-environment heat currents, using the hierarchical equations of motion. The dissipation of quantum information is identified by the system's transient change in entropy, which is proportional to the heat currents according to the second law of thermodynamics. These results indicate that the dissipation of quantum information is highly dependent on the particular nanoscale characteristics of the molecular network, which is a necessary first step before gleaning the systematic optimization rules. Subsequently, the I-concurrence dynamics are calculated to understand the evolution of the vibronic system's quantum entanglement, which are found to be long-lived compared to these system-bath dissipation processes.

3.
Chem Soc Rev ; 52(22): 7848-7948, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37872857

RESUMO

DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , Pontos Quânticos/química , Biotecnologia , Corantes Fluorescentes/química , DNA/química
4.
Phys Chem Chem Phys ; 25(5): 3651-3665, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648290

RESUMO

Nature uses chromophore networks, with highly optimized structural and energetic characteristics, to perform important chemical functions. Due to its modularity, predictable aggregation characteristics, and established synthetic protocols, structural DNA nanotechnology is a promising medium for arranging chromophore networks with analogous structural and energetic controls. However, this high level of control creates a greater need to know how to optimize the systems precisely. This study uses the system's modularity to produce variations of a coupled 14-Site chromophore network. It uses machine-learning algorithms and spectroscopy measurements to reveal the energy-transport roles of these Sites, paying particular attention to the cooperative and inhibitive effects they impose on each other for transport across the network. The physical significance of these patterns is contextualized, using molecular dynamics simulations and energy-transport modeling. This analysis yields insights about how energy transfers across the Donor-Relay and Relay-Acceptor interfaces, as well as the energy-transport pathways through the homogeneous Relay segment. Overall, this report establishes an approach that uses machine-learning methods to understand, in fine detail, the role that each Site plays in an optoelectronic molecular network.

5.
Molecules ; 27(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684394

RESUMO

Dye aggregates are of interest for excitonic applications, including biomedical imaging, organic photovoltaics, and quantum information systems. Dyes with large transition dipole moments (µ) are necessary to optimize coupling within dye aggregates. Extinction coefficients (ε) can be used to determine the µ of dyes, and so dyes with a large ε (>150,000 M−1cm−1) should be engineered or identified. However, dye properties leading to a large ε are not fully understood, and low-throughput methods of dye screening, such as experimental measurements or density functional theory (DFT) calculations, can be time-consuming. In order to screen large datasets of molecules for desirable properties (i.e., large ε and µ), a computational workflow was established using machine learning (ML), DFT, time-dependent (TD-) DFT, and molecular dynamics (MD). ML models were developed through training and validation on a dataset of 8802 dyes using structural features. A Classifier was developed with an accuracy of 97% and a Regressor was constructed with an R2 of above 0.9, comparing between experiment and ML prediction. Using the Regressor, the ε values of over 18,000 dyes were predicted. The top 100 dyes were further screened using DFT and TD-DFT to identify 15 dyes with a µ relative to a reference dye, pentamethine indocyanine dye Cy5. Two benchmark MD simulations were performed on Cy5 and Cy5.5 dimers, and it was found that MD could accurately capture experimental results. The results of this study exhibit that our computational workflow for identifying dyes with a large µ for excitonic applications is effective and can be used as a tool to develop new dyes for excitonic applications.


Assuntos
Corantes , Simulação de Dinâmica Molecular , Corantes/química , DNA/química , Replicação do DNA
6.
J Phys Chem A ; 125(44): 9632-9644, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34709821

RESUMO

Structural DNA nanotechnology is a promising approach to create chromophore networks with modular structures and Hamiltonians to control the material's functions. The functional behaviors of these systems depend on the interactions of the chromophores' vibronic states, as well as interactions with their environment. To optimize their functions, it is necessary to characterize the chromophore network's structural and energetic properties, including the electronic delocalization in some cases. In this study, parameters of interest are deduced in DNA-scaffolded Cyanine 3 and Cyanine 5 dimers. The methods include steady-state optical measurements, physical modeling, and a genetic algorithm approach. The parameters include the chromophore network's vibronic Hamiltonian, molecular positions, transition dipole orientations, and environmentally induced energy broadening. Additionally, the study uses temperature-dependent optical measurements to characterize the spectral broadening further. These combined results reveal the quantum mechanical delocalization, which is important for functions like coherent energy transport and quantum information applications.


Assuntos
DNA , Teoria Quântica
7.
J Am Chem Soc ; 139(1): 363-372, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28009161

RESUMO

An emerging trend with semiconductor quantum dots (QDs) is their use as scaffolds to assemble multiple energy transfer pathways. Examples to date have combined various competitive and sequential Förster resonance energy transfer (FRET) pathways between QDs and fluorescent dyes, luminescent lanthanide complexes, and bioluminescent proteins. Here, we show that the photoluminescence (PL) of QD bioconjugates can also be modulated by a combination of FRET and charge transfer (CT), and characterize the concurrent effects of these mechanistically different pathways using PL measurements at both the ensemble and the single particle level. Peptides were distally labeled with either a fluorescent dye that quenched QD PL through FRET or a ruthenium(II) phenanthroline complex that quenched QD PL through electron transfer. The labeled peptides were assembled around a central CdSe/ZnS QD at different ratios, tuning the relative rates of FRET and CT, which were competitive quenching pathways. The concurrent effects of FRET and CT were predictable from a rate analysis that was calibrated to the isolated effects of each of these pathways. Notably, the dye/QD PL intensity ratio reflected changes in the relative rate of FRET but was approximately independent of CT. In turn, the sum of the QD and dye PL intensities, when adjusted for quantum yields, reflected changes in the relative rate of CT quenching, approximately independent of FRET. The capacity for multiplexed sensing of protease activity was demonstrated using these two orthogonal detection channels. Combined CT-FRET configurations with QDs are thus promising for applications in bioanalysis, sensing, and imaging, and may prove useful in other photonic applications.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Luminescência , Compostos Organometálicos/química , Pontos Quânticos , Estrutura Molecular , Processos Fotoquímicos
8.
J Chem Phys ; 147(5): 055101, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28789556

RESUMO

Sequence-selective bis-intercalating dyes exhibit large increases in fluorescence in the presence of specific DNA sequences. This property makes this class of fluorophore of particular importance to biosensing and super-resolution imaging. Here we report ultrafast transient anisotropy measurements of resonance energy transfer (RET) between thiazole orange (TO) molecules in a complex formed between the homodimer TOTO and double-stranded (ds) DNA. Biexponential homo-RET dynamics suggest two subpopulations within the ensemble: 80% intercalated and 20% non-intercalated. Based on the application of the transition density cube method to describe the electronic coupling and Monte Carlo simulations of the TOTO/dsDNA geometry, the dihedral angle between intercalated TO molecules is estimated to be 81° ± 5°, corresponding to a coupling strength of 45 ± 22 cm-1. Dye intercalation with this geometry is found to occur independently of the underlying DNA sequence, despite the known preference of TOTO for the nucleobase sequence CTAG. The non-intercalated subpopulation is inferred to have a mean inter-dye separation distance of 19 Å, corresponding to coupling strengths between 0 and 25 cm-1. This information is important to enable the rational design of energy transfer systems that utilize TOTO as a relay dye. The approach used here is generally applicable to determining the electronic coupling strength and intercalation configuration of other dimeric bis-intercalators.


Assuntos
Benzotiazóis/química , DNA/química , Substâncias Intercalantes/química , Quinolinas/química , Corantes Fluorescentes/química
9.
Commun Chem ; 7(1): 49, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424154

RESUMO

Peptide-based liquid-liquid phase separated domains, or coacervates, are a biomaterial gaining new interest due to their exciting potential in fields ranging from biosensing to drug delivery. In this study, we demonstrate that coacervates provide a simple and biocompatible medium to improve nucleic acid biosensors through the sequestration of both the biosensor and target strands within the coacervate, thereby increasing their local concentration. Using the well-established polyarginine (R9) - ATP coacervate system and an energy transfer-based DNA molecular beacon we observed three key improvements: i) a greater than 20-fold reduction of the limit of detection within coacervates when compared to control buffer solutions; ii) an increase in the kinetics, equilibrium was reached more than 4-times faster in coacervates; and iii) enhancement in the dye fluorescent quantum yields within the coacervates, resulting in greater signal-to-noise. The observed benefits translate into coacervates greatly improving bioassay functionality.

10.
Nanoscale ; 16(31): 14959-14960, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39044540

RESUMO

Correction for 'Towards control of excitonic coupling in DNA-templated Cy5 aggregates: the principal role of chemical substituent hydrophobicity and steric interactions' by Sebastián A. Díaz et al., Nanoscale, 2023, 15, 3284-3299. https://doi.org/10.1039/D2NR05544A.

11.
Methods Appl Fluoresc ; 11(1)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719011

RESUMO

Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluorTM647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.


Assuntos
Quinolinas , Quinolinas/química , DNA/química , DNA de Cadeia Simples , Dicroísmo Circular
12.
Nanoscale ; 15(7): 3284-3299, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723027

RESUMO

Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.


Assuntos
Corantes , DNA , DNA/química , Carbocianinas/química , DNA Cruciforme
13.
Opt Express ; 20(6): 6788-807, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418562

RESUMO

Using a low power beam of ultrashort THz pulses that propagate in the ambient laboratory environment we have measured the rotational signatures of small molecule vapors at frequencies within the atmospheric transmission windows. We investigate two types of apparatus. In the first type the THz beam propagates along a 6.7 meter round trip path that is external to the spectrometer, and which contains a long sample tube (5.4 meter round trip path) that holds the analyte vapor. The environment of the tube is controlled to simulate dry or humid conditions. In the second apparatus the THz beam propagates over a much longer 170 meter round trip path with analyte vapor contained in a relatively short 1.2 meter round trip path sample chamber. We describe the rotational signatures for each apparatus in the presence of the strong interference from water vapor absorption. For the shorter path long-tube apparatus we find that the peak detection sensitivity is sufficient to resolve a 1% absorption feature. For the more challenging 170 meter path apparatus we find that the peak detection sensitivity is sufficient to resolve a 3-5% absorption feature. The experiments presented here represent a first step towards using ultrashort THz pulses for coherent broad band detection of small molecule gases and vapors under ambient conditions.


Assuntos
Atmosfera/análise , Gases/análise , Microquímica/instrumentação , Espectroscopia Terahertz/estatística & dados numéricos , Desenho de Equipamento , Análise de Falha de Equipamento , Radiação Terahertz
14.
Phys Rev Lett ; 108(7): 077402, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401254

RESUMO

We elucidate photoexcitation dynamics in C(60) and zinc phthalocyanine (ZnPc) from picoseconds to milliseconds by transient absorption and time-resolved terahertz spectroscopy. Autoionization of C(60) is a precursor to photocarrier generation. Decay of the terahertz signal is due to decreasing photocarrier mobility over the first 20 ps and thereafter reflects recombination dynamics. Singlet diffusion rates in C(60) are determined by modeling the rise of ground state bleaching of ZnPc absorption following C(60) excitation. Recombination dynamics transform from bimolecular to monomolecular as the layer thickness is reduced, revealing a metastable exciplex at the C(60)/ZnPc interface with a lifetime of 150 µs.

15.
Nano Lett ; 11(8): 3476-81, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21766838

RESUMO

The creation of a single electron-hole pair (i.e., exciton) per incident photon is a fundamental limitation for current optoelectronic devices including photodetectors and photovoltaic cells. The prospect of multiple exciton generation per incident photon is of great interest to fundamental science and the improvement of solar cell technology. Multiple exciton generation is known to occur in semiconductor nanostructures with increased efficiency and reduced threshold energy compared to their bulk counterparts. Here we report a significant enhancement of multiple exciton generation in PbSe quasi-one-dimensional semiconductors (nanorods) over zero-dimensional nanostructures (nanocrystals), characterized by a 2-fold increase in efficiency and reduction of the threshold energy to (2.23 ± 0.03)E(g), which approaches the theoretical limit of 2E(g). Photovoltaic cells based on PbSe nanorods are capable of improved power conversion efficiencies, in particular when operated in conjunction with solar concentrators.

16.
RSC Adv ; 12(43): 28063-28078, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320263

RESUMO

Dye aggregates and their excitonic properties are of interest for their applications to organic photovoltaics, non-linear optics, and quantum information systems. DNA scaffolding has been shown to be effective at promoting the aggregation of dyes in a controllable manner. Specifically, isolated DNA Holliday junctions have been used to achieve strongly coupled cyanine dye dimers. However, the structural properties of the dimers and the DNA, as well as the role of Holliday junction isomerization are not fully understood. To study the dynamics of cyanine dimers in DNA, molecular dynamics simulations were carried out for adjacent and transverse dimers attached to Holliday junctions in two different isomers. It was found that dyes attached to adjacent strands in the junction exhibit stronger dye-DNA interactions and larger inter-dye separations compared to transversely attached dimers, as well as end-to-end arrangements. Transverse dimers exhibit lower inter-dye separations and more stacked configurations. Furthermore, differences in Holliday junction isomer are analyzed and compared to dye orientations. For transverse dyes exhibiting the smaller inter-dye separations, excitonic couplings were calculated and shown to be in agreement with experiment. Our results suggested that dye attachment locations on DNA Holliday junctions affect dye-DNA interactions, dye dynamics, and resultant dye orientations which can guide the design of DNA-templated cyanine dimers with desired properties.

17.
ACS Appl Mater Interfaces ; 14(2): 3404-3417, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982525

RESUMO

There is significant interest in developing photothermal systems that can precisely control the structure and function of biomolecules through local temperature modulation. One specific application is the denaturation of double-stranded (ds) DNA through femtosecond (fs) laser pulse optical heating of gold nanoparticles (AuNPs); however, the mechanism of DNA melting in these systems is not fully understood. Here, we utilize 55 nm AuNPs with surface-tethered dsDNA, which are locally heated using fs laser pulses to induce DNA melting. By varying the dsDNA distance from the AuNP surface and the laser pulse energy fluence, this system is used to study how the nanosecond duration temperature increase and the steep temperature gradient around the AuNP affect dsDNA dehybridization. Through modifying the distance between the dsDNA and AuNP surface by 3.8 nm in total and the pulse energy fluence from 7.1 to 14.1 J/m2, the dehybridization rates ranged from 0.002 to 0.05 DNA per pulse, and the total amount of DNA released into solution was controlled over a range of 26-93% in only 100 s of irradiation. By shifting the dsDNA position as little as ∼1.1 nm, the average dsDNA dehybridization rate is altered up to 30 ± 2%, providing a high level of control over DNA melting and release. By comparing the theoretical temperature around the dsDNA to the experimentally derived temperature, we find that maximum or peak temperatures have a greater influence on the dehybridization rate when the dsDNA is closer to the AuNP surface and when lower laser pulse fluences are used. Furthermore, molecular dynamics simulations mimicking the photothermal heat pulse around a AuNP provide mechanistic insight into the stochastic nature of dehybridization and demonstrate increased base pair separation near the AuNP surface during laser pulse heating when compared to steady-state heating. Understanding how biological materials respond to the short-lived and non-uniform temperature increases innate to fs laser pulse optical heating of AuNPs is critical to improving the functionality and precision of this technique so that it may be implemented into more complex biological systems.


Assuntos
Materiais Biocompatíveis/química , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Temperatura , Teste de Materiais , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico , Fatores de Tempo
18.
J Phys Chem B ; 126(1): 110-122, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34962787

RESUMO

Progress has been made using B-form DNA duplex strands to template chromophores in ordered molecular aggregates known as J-aggregates. These aggregates can exhibit strong electronic coupling, extended coherent lifetimes, and long-range exciton delocalization under appropriate conditions. Certain cyanine dyes such as pseudoisocyanine (PIC) dye have shown a proclivity to form aggregates in specific DNA sequences. In particular, DX-tiles containing nonalternating poly(dA)-poly(dT) dinucleotide tracks (AT-tracks), which template noncovalent PIC dye aggregates, have been demonstrated to exhibit interesting emergent photonic properties. These DNA-based aggregates are referred to as J-bits for their similarity to J-aggregates. Here, we assemble multifluorophore DX-tile scaffolds which template J-bits into both contiguous and noncontiguous linear arrays. Our goal is to understand the relay capability of noncontiguous J-bit arrays and probe the effects that orientation and position have on the energy transfer between them. We find that linearly contiguous J-bits can relay excitons from an initial AlexaFluor 405 donor to a terminal AlexaFluor 647 acceptor across a distance of up to 16.3 nm. We observed a maximum increase in energy transfer of 41% in the shortest scaffold and an 11% increase in energy transfer across the maximum distance. However, in nonlinear arrays, exciton transfer is not detectable, even when off-axis J-bit-to-J-bit transfer distances were <2 nm. These results, in conjunction with the previous work on PIC-DNA systems, suggest that PIC-DNA-based systems may currently be limited to simple 1-D designs, which prevent isolating J-bits for enhanced energy-transfer characteristics until further understanding and improvements to the system can be made.


Assuntos
Nanoestruturas , Quinolinas , Corantes , DNA
19.
ACS Omega ; 7(13): 11002-11016, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415341

RESUMO

Cyanine dyes represent a family of organic fluorophores with widespread utility in biological-based applications ranging from real-time PCR probes to protein labeling. One burgeoning use currently being explored with indodicarbocyanine (Cy5) in particular is that of accessing exciton delocalization in designer DNA dye aggregate structures for potential development of light-harvesting devices and room-temperature quantum computers. Tuning the hydrophilicity/hydrophobicity of Cy5 dyes in such DNA structures should influence the strength of their excitonic coupling; however, the requisite commercial Cy5 derivatives available for direct incorporation into DNA are nonexistent. Here, we prepare a series of Cy5 derivatives that possess different 5,5'-substituents and detail their incorporation into a set of DNA sequences. In addition to varying dye hydrophobicity/hydrophilicity, the 5,5'-substituents, including hexyloxy, triethyleneglycol monomethyl ether, tert-butyl, and chloro groups were chosen so as to vary the inherent electron-donating/withdrawing character while also tuning their resulting absorption and emission properties. Following the synthesis of parent dyes, one of their pendant alkyl chains was functionalized with a monomethoxytrityl protective group with the remaining hydroxyl-terminated N-propyl linker permitting rapid, same-day phosphoramidite conversion and direct internal DNA incorporation into nascent oligonucleotides with moderate to good yields using a 1 µmole scale automated DNA synthesis. Labeled sequences were cleaved from the controlled pore glass matrix, purified by HPLC, and their photophysical properties were characterized. The DNA-labeled Cy5 derivatives displayed spectroscopic properties that paralleled the parent dyes, with either no change or an increase in fluorescence quantum yield depending upon sequence.

20.
J Phys Chem C Nanomater Interfaces ; 126(40): 17164-17175, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36268205

RESUMO

Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm-1). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA