Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biochem Soc Trans ; 52(4): 1591-1604, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940747

RESUMO

Interleukin-36 (IL-36) cytokines are structurally similar to other Interleukin-1 superfamily members and are essential to convey inflammatory responses at epithelial barriers including the skin, lung, and gut. Due to their potent effects on immune cells, IL-36 cytokine activation is regulated on multiple levels, from expression and activation to receptor binding. Different IL-36 isoforms convey specific responses as a consequence of particular danger- or pathogen-associated molecular patterns. IL-36 expression and activation are regulated by exogenous pathogens, including fungi, viruses and bacteria but also by endogenous factors such as antimicrobial peptides or cytokines. Processing of IL-36 into potent bioactive forms is necessary for host protection but can elevate tissue damage. Indeed, exacerbated IL-36 signalling and hyperactivation are linked to the pathogenesis of diseases such as plaque and pustular psoriasis, emphasising the importance of understanding the molecular aspects regulating IL-36 activation. Here, we summarise facets of the electrochemical properties, regulation of extracellular cleavage by various proteases and receptor signalling of the pro-inflammatory and anti-inflammatory IL-36 family members. Additionally, this intriguing cytokine subfamily displays many characteristics that are unique from prototypical members of the IL-1 family and these key distinctions are outlined here.


Assuntos
Interleucina-1 , Transdução de Sinais , Humanos , Interleucina-1/metabolismo , Animais , Inflamação/metabolismo , Isoformas de Proteínas/metabolismo
2.
Nat Immunol ; 13(11): 1055-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042151

RESUMO

Toll-like receptors (TLRs) sense pathogen-associated molecules and respond by inducing cytokines and type I interferon. Here we show that genetic ablation of the E3 ubiquitin ligase Pellino3 augmented the expression of type I interferon but not of proinflammatory cytokines in response to TLR3 activation. Pellino3-deficient mice had greater resistance against the pathogenic and lethal effects of encephalomyocarditis virus (EMCV). TLR3 signaling induced Pellino3, which in turn interacted with and ubiquitinated TRAF6. This modification suppressed the ability of TRAF6 to interact with and activate IRF7, resulting in downregulation of type I interferon expression. Our findings highlight a new physiological role for Pellino3 and define a new autoregulatory network for controlling type I interferon expression.


Assuntos
Infecções por Cardiovirus/imunologia , Regulação da Expressão Gênica , Interferon Tipo I/imunologia , Receptor 3 Toll-Like/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/mortalidade , Infecções por Cardiovirus/virologia , Vírus da Encefalomiocardite/imunologia , Homeostase , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Transdução de Sinais , Taxa de Sobrevida , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologia , Receptor 3 Toll-Like/genética , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
Br J Dermatol ; 190(3): 305-315, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37889986

RESUMO

Inflammasomes are cytoplasmic protein complexes that play a crucial role in protecting the host against pathogenic and sterile stressors by initiating inflammation. Upon activation, these complexes directly regulate the proteolytic processing and activation of proinflammatory cytokines interleukin (IL)-1ß and IL-18 to induce a potent inflammatory response, and induce a programmed form of cell death called pyroptosis to expose intracellular pathogens to the surveillance of the immune system, thus perpetuating inflammation. There are various types of inflammasome complexes, with the NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome being the first one identified and currently recognized as the predominant inflammasome sensor protein in human keratinocytes. Human NLRP1 exhibits a unique domain structure, containing both an N-terminal pyrin (PYD) domain and an effector C-terminal caspase recruitment domain (CARD). It can be activated by diverse stimuli, such as viruses, ultraviolet B radiation and ribotoxic stress responses. Specific mutations in NLRP1 or related genes have been associated with rare monogenic skin disorders, such as multiple self-healing palmoplantar carcinoma; familial keratosis lichenoides chronica; autoinflammation with arthritis and dyskeratosis; and dipeptidyl peptidase 9 deficiency. Recent research breakthroughs have also highlighted the involvement of dysfunctions in the NLRP1 pathway in a handful of seemingly unrelated dermatological conditions. These range from monogenic autoinflammatory diseases to polygenic autoimmune diseases such as vitiligo, psoriasis, atopic dermatitis and skin cancer, including squamous cell carcinoma, melanoma and Kaposi sarcoma. Additionally, emerging evidence implicates NLRP1 in systemic lupus erythematosus, pemphigus vulgaris, Addison disease, Papillon-Lefèvre syndrome and leprosy. The aim of this review is to shed light on the implications of pathological dysregulation of the NLRP1 inflammasome in skin diseases and investigate the potential rationale for targeting this pathway as a future therapeutic approach.


Assuntos
Dermatite , Dermatopatias , Neoplasias Cutâneas , Humanos , Inflamassomos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas NLR/metabolismo , Neoplasias Cutâneas/patologia , Dermatopatias/etiologia , Inflamação/genética , Interleucina-1beta/metabolismo
4.
Anticancer Drugs ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39012759

RESUMO

Chemotherapies are standard care for most cancer types. Pyrimidine analogs including 5-fluorouracil, cytosine arabinoside, 5-azacytidine, and gemcitabine are effective drugs that are utilized as part of a number of anticancer regimens. However, their lack of cell-specificity results in severe side effects. Therefore, there is a capacity to improve the efficacy of such therapies, while decreasing unwanted side effects. Here, we report that while 5-fluorocytosine is not chemotherapeutic in itself, incorporated into a ribonucleoside and more importantly into an RNA oligonucleotide, it induces cytotoxic effects on cancer cells in vitro . Interestingly, these effects are rescued by both uridine and thymidine. Similarly, in-vitro 2'-deoxy-5-fluorocytidine inhibits the growth of tumor cells but has the advantage of being less toxic to human primary cells compared with 5-fluorocytidine, suggesting that the deoxyribonucleoside could exhibit less side-effects in vivo . Thus, this work indicates that the potency of 5-fluorocytidine and 2'-deoxy-5-fluorocytidine should be further explored. In particular, oligonucleotides incorporating 5-fluorocytosine could be novel chemotherapeutic drugs that could be formulated in cancer-specific particles for safe and efficacious cancer treatments.

5.
RNA Biol ; 19(1): 996-1006, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993275

RESUMO

RNA editing refers to non-transient RNA modifications that occur after transcription and prior to translation by the ribosomes. RNA editing is more widespread in cancer cells than in non-transformed cells and is associated with tumorigenesis of various cancer tissues. However, RNA editing can also generate neo-antigens that expose tumour cells to host immunosurveillance. Global RNA editing in melanoma and its relevance to clinical outcome currently remain poorly characterized. The present study compared RNA editing as well as gene expression in tumour cell lines from melanoma patients of short or long metastasis-free survival, patients relapsing or not after immuno- and targeted therapy and tumours harbouring BRAF or NRAS mutations. Overall, our results showed that NTRK gene expression can be a marker of resistance to BRAF and MEK inhibition and gives some insights of candidate genes as potential biomarkers. In addition, this study revealed an increase in Adenosine-to-Inosine editing in Alu regions and in non-repetitive regions, including the hyperediting of the MOK and DZIP3 genes in relapsed tumour samples during targeted therapy and of the ZBTB11 gene in NRAS mutated melanoma cells. Therefore, RNA editing could be a promising tool for identifying predictive markers, tumour neoantigens and targetable pathways that could help in preventing relapses during immuno- or targeted therapies.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Humanos , Melanoma/genética , Melanoma/terapia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925158

RESUMO

The nucleotide-binding domain and leucine-rich-repeat-containing family (NLRs) (sometimes called the NOD-like receptors, though the family contains few bona fide receptors) are a superfamily of multidomain-containing proteins that detect cellular stress and microbial infection. They constitute a critical arm of the innate immune response, though their functions are not restricted to pathogen recognition and members engage in controlling inflammasome activation, antigen-presentation, transcriptional regulation, cell death and also embryogenesis. NLRs are found from basal metazoans to plants, to zebrafish, mice and humans though functions of individual members can vary from species to species. NLRs also display highly wide-ranging tissue expression. Here, we discuss the importance of NLRs to the immune response at the epidermal barrier and summarise the known role of individual family members in the pathogenesis of skin disease.


Assuntos
Epiderme/metabolismo , Proteínas NLR/metabolismo , Proteínas NLR/fisiologia , Animais , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamassomos/imunologia , Inflamassomos/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Plantas/imunologia , Transdução de Sinais , Pele/imunologia , Pele/metabolismo
7.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34884681

RESUMO

Apremilast (Otezla®) is an oral small molecule phosphodiesterase 4 (PDE4) inhibitor approved for the treatment of psoriasis, psoriatic arthritis, and oral ulcers associated with Behçet's disease. While PDE4 inhibition overall is mechanistically understood, the effect of apremilast on the innate immune response, particularly inflammasome activation, remains unknown. Here, we assessed the effect of apremilast in a psoriasis mouse model and primary human cells. Psoriatic lesion development in vivo was studied in K5.Stat3C transgenic mice treated with apremilast for 2 weeks, resulting in a moderate (2 mg/kg/day) to significant (6 mg/kg/day) resolution of inflamed plaques after 2-week treatment. Concomitantly, epidermal thickness dramatically decreased, the cutaneous immune cell infiltrate was reduced, and proinflammatory cytokines were significantly downregulated. Additionally, apremilast significantly inhibited lipopolysaccharide- or anti-CD3-induced expression of proinflammatory cytokines in peripheral mononuclear cells (PBMCs). Notably, inflammasome activation and secretion of IL-1ß were not inhibited by apremilast in PBMCs and in human primary keratinocytes. Collectively, apremilast effectively alleviated the psoriatic phenotype of K5.Stat3 transgenic mice, further substantiating PDE4 inhibitor-efficiency in targeting key clinical, histopathological and inflammatory features of psoriasis. Despite lacking direct effect on inflammasome activation, reduced priming of inflammasome components upon apremilast treatment reflected the indirect benefit of PDE4 inhibition in reducing inflammation.


Assuntos
Interleucina-1beta/metabolismo , Inibidores da Fosfodiesterase 4/uso terapêutico , Psoríase/tratamento farmacológico , Talidomida/análogos & derivados , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamassomos/metabolismo , Camundongos Transgênicos , Inibidores da Fosfodiesterase 4/farmacologia , Psoríase/metabolismo , Talidomida/farmacologia , Talidomida/uso terapêutico
8.
Cell Immunol ; 354: 104147, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32593012

RESUMO

CARD14 is a scaffold molecule predominantly expressed in keratinocytes and genetic variants in the CARD14 gene confer an increased risk of inflammatory skin disease. Due to its association with common skin diseases psoriasis and atopic dermatitis, the biological function of CARD14 is of relevant interest to human health. CARD14 recruits BCL10 and MALT1 to form the CARD-BCL10-MALT1 complex, which modulates NF-κB and MAPK signalling pathways, yet little is known about how CARD14 is regulated or activated in the context of the innate immune response and in chronic inflammation. This review summarises the current understanding of the molecular function and regulatory mechanisms of CARD14 and highlights recent findings in human disease and murine mouse models.


Assuntos
Inflamação/imunologia , Queratinócitos/metabolismo , Pele/imunologia , Animais , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Guanilato Quinases , Humanos , Imunidade Inata , Queratinócitos/patologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais
9.
Methods Mol Biol ; 2786: 205-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814396

RESUMO

The recent success of the synthetic mRNA-based anti-COVID-19 vaccines has demonstrated the broad potential of the mRNA platform for applications in medicine, thanks to the combined efforts of a small community that has vastly improved key determinants such as design and formulation of synthetic mRNA during the past three decades. However, the cost of production and sensitivity to enzymatic degradation are still limiting the broader application of synthetic mRNA for therapeutic applications. The increased interest in mRNA-based technologies has spurred a renaissance for circular RNA (circRNA), as the lack of free 5' and 3' ends substantially increases resistance against enzymatic degradation in biological systems and does not require expensive cap analogs, as translation is controlled by an Internal Ribosome Entry Site (IRES) sequence. Thus, it can be expected that circRNA will play an important role for future mRNA therapeutics. Here we provide a detailed guide to the production of synthetic circRNA.


Assuntos
RNA Circular , RNA Circular/genética , Humanos , Vetores Genéticos/genética , SARS-CoV-2/genética , RNA Mensageiro/genética , COVID-19/virologia , COVID-19/genética , RNA/genética
10.
Methods Mol Biol ; 2786: 237-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814398

RESUMO

During recent years, RNA therapeutics have begun to make a substantial impact in the clinic, with the approval of the siRNA-based therapeutic Patisiran in 2018, and of the two mRNA SARS-CoV-2 vaccines, BNT162b2 and mRNA-1273 in 2021. A key to the success of these therapeutics lies in the lipid-based delivery system. The therapeutic RNAs are encapsulated in lipid nanoparticles (LNPs), which protect against enzymatic degradation and efficiently deliver the RNA across the cell membrane into the cytosol. Thereby, the method used for LNP synthesis and its lipid composition are crucial aspects that decide the efficacy of the LNP-RNA hetero system. Here we provide a detailed guide for the simple preparation of LNP-encapsulated mRNA vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Lipídeos , Nanopartículas , RNA Mensageiro , SARS-CoV-2 , Nanopartículas/química , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Vacinas contra COVID-19/imunologia , Lipídeos/química , COVID-19/prevenção & controle , COVID-19/virologia , RNA Mensageiro/genética , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , Vacinas de mRNA , Lipossomos/química , Nanovacinas
11.
Cells ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39120273

RESUMO

Synthetic mRNA produced by in vitro transcription (ivt mRNA) is the active pharmaceutical ingredient of approved anti-COVID-19 vaccines and of many drugs under development. Such synthetic mRNA typically contains several hundred bases of non-coding "untranslated" regions (UTRs) that are involved in the stabilization and translation of the mRNA. However, UTRs are often complex structures, which may complicate the entire production process. To eliminate this obstacle, we managed to reduce the total amount of nucleotides in the UTRs to only four bases. In this way, we generate minimal ivt mRNA ("minRNA"), which is less complex than the usual optimized ivt mRNAs that are contained, for example, in approved vaccines. We have compared the efficacy of minRNA to common augmented mRNAs (with UTRs of globin genes or those included in licensed vaccines) in vivo and in vitro and could demonstrate equivalent functionalities. Our minimal mRNA design will facilitate the further development and implementation of ivt mRNA-based vaccines and therapies.


Assuntos
RNA Mensageiro , SARS-CoV-2 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Humanos , SARS-CoV-2/genética , Regiões não Traduzidas , Camundongos , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Transcrição Gênica
12.
Nat Commun ; 15(1): 6718, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112467

RESUMO

Psoriasis is a multifactorial, chronic inflammatory skin disease with unresolved questions on its primary events. Iron overload has been described in the epidermis of psoriasis patients, but its relevance remains unknown. We found that the key iron regulatory hormone hepcidin was highly expressed in the epidermis of psoriasis patients, especially the pustular variants resistant to treatments. In a murine model of acute skin inflammation, keratinocyte-derived hepcidin was required for iron retention in keratinocytes, leading to hyperproliferation of the epidermal layer and neutrophil recruitment, two main features of psoriatic skin lesions. Keratinocytes overexpressing hepcidin were sufficient to elicit these psoriasiform features in a transgenic mouse model. Furthermore, transcriptome analysis of these keratinocytes revealed canonical pathways found in human psoriasis, pointing to a causal role for hepcidin in the pathogenesis of the disease. Altogether, our data suggest that hepcidin could be an actionable target for skin psoriasis treatment, in addition to current therapeutics, or targeted as maintenance therapy during remission to prevent recurrence.


Assuntos
Proliferação de Células , Hepcidinas , Ferro , Queratinócitos , Camundongos Transgênicos , Infiltração de Neutrófilos , Psoríase , Pele , Hepcidinas/metabolismo , Hepcidinas/genética , Psoríase/metabolismo , Psoríase/patologia , Animais , Queratinócitos/metabolismo , Humanos , Ferro/metabolismo , Camundongos , Pele/metabolismo , Pele/patologia , Modelos Animais de Doenças , Masculino , Feminino , Epiderme/metabolismo , Epiderme/patologia , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/patologia
13.
Sci Adv ; 10(27): eado2365, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959302

RESUMO

Pityriasis rubra pilaris (PRP) is a rare inflammatory skin disease with a poorly understood pathogenesis. Through a molecularly driven precision medicine approach and an extensive mechanistic pathway analysis in PRP skin samples, compared to psoriasis, atopic dermatitis, healed PRP, and healthy controls, we identified IL-1ß as a key mediator, orchestrating an NF-κB-mediated IL-1ß-CCL20 axis, including activation of CARD14 and NOD2. Treatment of three patients with the IL-1 antagonists anakinra and canakinumab resulted in rapid clinical improvement and reversal of the PRP-associated molecular signature with a 50% improvement in skin lesions after 2 to 3 weeks. This transcriptional signature was consistent with in vitro stimulation of keratinocytes with IL-1ß. With the central role of IL-1ß underscoring its potential as a therapeutic target, our findings propose a redefinition of PRP as an autoinflammatory keratinization disorder. Further clinical trials are needed to validate the efficacy of IL-1ß antagonists in PRP.


Assuntos
Anticorpos Monoclonais Humanizados , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1beta , Queratinócitos , Pitiríase Rubra Pilar , Humanos , Pitiríase Rubra Pilar/tratamento farmacológico , Pitiríase Rubra Pilar/patologia , Pitiríase Rubra Pilar/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/antagonistas & inibidores , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Masculino , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/antagonistas & inibidores , Feminino , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Pele/patologia , Pele/metabolismo , Pele/efeitos dos fármacos , Interleucina-1/antagonistas & inibidores , Interleucina-1/metabolismo , Interleucina-1/genética , Pessoa de Meia-Idade , Guanilato Ciclase/metabolismo , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/genética , Adulto , Transdução de Sinais/efeitos dos fármacos , Proteínas de Membrana
14.
J Immunol ; 186(8): 4925-35, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21398611

RESUMO

TLRs initiate immune responses by direct detection of molecular motifs that distinguish invading microbes from host cells. Five intracellular adaptor proteins, each containing a Toll/IL-1R (TIR) domain, are used by TLRs and play key roles in dictating gene expression patterns that are tailored to the invader. Such gene expression is mediated by transcription factors, and although TIR adaptor-induced activation of NF-κB and the IFN regulatory factors have been intensively studied, there is a dearth of information on the role of TIR adaptors in regulating CREB. In this paper, we describe a role for the TIR adaptor Mal in enhancing activation of CREB. Mal-deficient murine bone marrow-derived macrophages show a loss in responsiveness to TLR2 and TLR4 ligands with respect to activation of CREB. Mal-deficient cells also fail to express the CREB-responsive genes IL-10 and cyclooxygenase 2 in response to Pam(2)Cys-Ser-(Lys)4 and LPS. We reveal that Mal-mediated activation of CREB is dependent on Pellino3 and TNFR-associated factor 6, because CREB activation is greatly diminished in Pellino3 knockdown cells and TNFR-associated factor 6-deficient cells. We also demonstrate the importance of p38 MAPK in this pathway with the p38 inhibitor SB203580 abolishing activation of CREB in murine macrophages. MAPK-activated protein kinase 2 (MK2), a substrate for p38 MAPK, is the likely downstream mediator of p38 MAPK in this pathway, because Mal is shown to activate MK2 and inhibition of MK2 decreases TLR4-induced activation of CREB. Overall, these studies demonstrate a new role for Mal as a key upstream regulator of CREB and as a contributor to the expression of both pro- and anti-inflammatory genes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Interleucina-10/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo , Animais , Western Blotting , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Interleucina-10/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Interleucina-1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases
15.
Front Immunol ; 14: 1335691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292479

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2022.1075615.].

16.
Front Immunol ; 13: 1075615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591277

RESUMO

Introduction: Psoriasis is an autoimmune skin disease associated with multiple comorbidities. The immunoproteasome is a special form of the proteasome expressed in cells of hematopoietic origin. Methods: The therapeutic use of ONX 0914, a selective inhibitor of the immunoproteasome, was investigated in Card14ΔE138+/- mice, which spontaneously develop psoriasis-like symptoms, and in the imiquimod murine model. Results: In both models, treatment with ONX 0914 significantly reduced skin thickness, inflammation scores, and pathological lesions in the analyzed skin tissue. Furthermore, immunoproteasome inhibition normalized the expression of several pro-inflammatory genes in the ear and significantly reduced the inflammatory infiltrate, accompanied by a significant alteration in the αß+ and γδ+ T cell subsets. Discussion: ONX 0914 ameliorated psoriasis-like symptoms in two different murine psoriasis models, which supports the use of immunoproteasome inhibitors as a therapeutic treatment in psoriasis.


Assuntos
Doenças Autoimunes , Psoríase , Camundongos , Animais , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Psoríase/tratamento farmacológico , Pele/patologia , Inflamação/patologia
17.
Cell Death Dis ; 13(12): 1077, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581625

RESUMO

NLRP1 is the primary inflammasome sensor in human keratinocytes. Sensing of UVB radiation by NLRP1 is believed to underlie the induction of sunburn. Although constitutive NLRP1 activation causes skin inflammation and predisposes patients to the development of cutaneous SCCs, the NLRP1 pathway is suppressed in established SCCs. Here, we identified high levels of the autophagy receptor p62 in SCC cells lines and SCC tumors. Increased NF-κB activity in SCC cells causes p62 up-regulation. Suppression of p62 expression rescues UVB-induced NLRP1 inflammasome activation in early-stage SCC cells. p62 expression protects SCC cells from cytotoxic drugs, whereas NLRP1 sensitizes them. In summary, we identify p62 as a novel negative regulator of the NLRP1 inflammasome in human cutaneous SCC cells, in which suppression of NLRP1 by increased levels of p62 supports stress resistance of skin cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo , Pele/metabolismo
18.
Oncoimmunology ; 11(1): 2147665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419823

RESUMO

Nanoparticles of different sizes formulated with unmodified RNA and Protamine differentially engage Toll-like Receptors (TLRs) and activate innate immune responses in vitro. Here, we report that similar differential immunostimulation that depends on the nanoparticle sizes is induced in vivo in wild type as well as in humanized mice. In addition, we found that the schedule of injections strongly affects the magnitude of the immune response. Immunostimulating 130 nm nanoparticles composed of RNA and Protamine can promote lung metastasis clearance but provides no control of subcutaneous tumors in a CT26 tumor model. We further enhanced the therapeutic capacity of Protamine-RNA nanoparticles by incorporating chemotherapeutic base analogues in the RNA; we coined these immunochemotherapeutic RNAs (icRNAs). Protamine-icRNA nanoparticles were successful at controlling established subcutaneous CT26 and B16 tumors as well as orthotopic glioblastoma. These data indicate that icRNAs are promising cancer therapies, which warrants their further validation for use in the clinic.


Assuntos
Antineoplásicos , Glioblastoma , Nanopartículas , Animais , Camundongos , RNA , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Protaminas
19.
Pharmaceutics ; 13(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198550

RESUMO

Protamine is a natural cationic peptide mixture mostly known as a drug for the neutralization of heparin and as a compound in formulations of slow-release insulin. Protamine is also used for cellular delivery of nucleic acids due to opposite charge-driven coupling. This year marks 60 years since the first use of Protamine as a transfection enhancement agent. Since then, Protamine has been broadly used as a stabilization agent for RNA delivery. It has also been involved in several compositions for RNA-based vaccinations in clinical development. Protamine stabilization of RNA shows double functionality: it not only protects RNA from degradation within biological systems, but also enhances penetration into cells. A Protamine-based RNA delivery system is a flexible and versatile platform that can be adjusted according to therapeutic goals: fused with targeting antibodies for precise delivery, digested into a cell penetrating peptide for better transfection efficiency or not-covalently mixed with functional polymers. This manuscript gives an overview of the strategies employed in protamine-based RNA delivery, including the optimization of the nucleic acid's stability and translational efficiency, as well as the regulation of its immunostimulatory properties from early studies to recent developments.

20.
Viruses ; 13(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202260

RESUMO

The quantification of T-cell immune responses is crucial for the monitoring of natural and treatment-induced immunity, as well as for the validation of new immunotherapeutic approaches. The present study presents a simple method based on lipofection of synthetic mRNA in mononuclear cells as a method to determine in vitro T-cell responses. We compared several commercially available transfection reagents for their potential to transfect mRNA into human peripheral blood mononuclear cells and murine splenocytes. We also investigated the impact of RNA modifications in improving this method. Our results demonstrate that antigen-specific T-cell immunomonitoring can be easily and quickly performed by simple lipofection of antigen-coding mRNA in complex immune cell populations. Thus, our work discloses a convenient solution for the in vitro monitoring of natural or therapy-induced T-cell immune responses.


Assuntos
Antígenos/genética , Antígenos/imunologia , Leucócitos Mononucleares/imunologia , Monitorização Imunológica/métodos , RNA Mensageiro/genética , Linfócitos T/imunologia , Animais , Linhagem Celular , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A/imunologia , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas , Baço/citologia , Transfecção , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA