Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 46(10): 5075-5082, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31423033

RESUMO

Lobate stony landforms occur on steep slopes at high latitudes on Mars. We demonstrate active boulder movement at seven such sites. Submeter-scale boulders frequently move distances of a few meters. The movement is concentrated in the vicinity of the lobate landforms but also occurs on other slopes. This provides evidence for a newly discovered, common style of activity on Mars, which may play an important role in slope degradation. It also opens the possibility that the lobate features are currently forming in the absence of significant volumes of liquid water.

2.
Sci Adv ; 10(4): eadi8339, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277450

RESUMO

The delta deposits in Jezero crater contain sedimentary records of potentially habitable conditions on Mars. NASA's Perseverance rover is exploring the Jezero western delta with a suite of instruments that include the RIMFAX ground penetrating radar, which provides continuous subsurface images that probe up to 20 meters below the rover. As Perseverance traversed across the contact between the Jezero crater floor and the delta, RIMFAX detected a distinct discontinuity in the subsurface layer structure. Below the contact boundary are older crater floor units exhibiting discontinuous inclined layering. Above the contact boundary are younger basal delta units exhibiting regular horizontal layering. At one location, there is a clear unconformity between the crater floor and delta layers, which implies that the crater floor experienced a period of erosion before the deposition of the overlying delta strata. The regularity and horizontality of the basal delta sediments observed in the radar cross sections indicate that they were deposited in a low-energy lake environment.

3.
Sci Adv ; 8(34): eabp8564, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007008

RESUMO

The Radar Imager for Mars Subsurface Experiment instrument has conducted the first rover-mounted ground-penetrating radar survey of the Martian subsurface. A continuous radar image acquired over the Perseverance rover's initial ~3-kilometer traverse reveals electromagnetic properties and bedrock stratigraphy of the Jezero crater floor to depths of ~15 meters below the surface. The radar image reveals the presence of ubiquitous strongly reflecting layered sequences that dip downward at angles of up to 15 degrees from horizontal in directions normal to the curvilinear boundary of and away from the exposed section of the Séitah formation. The observed slopes, thicknesses, and internal morphology of the inclined stratigraphic sections can be interpreted either as magmatic layering formed in a differentiated igneous body or as sedimentary layering commonly formed in aqueous environments on Earth. The discovery of buried structures on the Jezero crater floor is potentially compatible with a history of igneous activity and a history of multiple aqueous episodes.

4.
Nat Commun ; 10(1): 1716, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979886

RESUMO

Sublimation of ice is rate-controlled by vapor transport away from its outer surface and may have generated landforms on Mars. In ice-cemented ground (permafrost), the lag of soil particles remaining after ice loss decreases subsequent sublimation. Varying soil-ice ratios lead to differential lag development. Here we report 52 years of sublimation measurements from a permafrost tunnel near Fairbanks, Alaska, and constrain models of sublimation, diffusion through porous soil, and lag formation. We derive the first long-term in situ effective diffusion coefficient of ice-free loess, a Mars analog soil, of 9.05 × 10-6 m2 s-1, ~5× larger than past theoretical studies. Exposed ice-wedge sublimation proceeds ~4× faster than predicted from analogy to heat loss by buoyant convection, a theory frequently employed in Mars studies. Our results can be used to map near-surface ice-content differences, identify surface processes controlling landform formation and morphology, and identify target landing sites for human exploration of Mars.

5.
Astrobiology ; 19(11): 1315-1338, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31657948

RESUMO

This work aims at addressing whether a catastrophic failure of an entry, descent, and landing event of a Multimission Radioisotope Thermoelectric Generator-based lander could embed the heat sources into the martian subsurface and create a local environment that (1) would temporarily satisfy the conditions for a martian Special Region and (2) could establish a transport mechanism through which introduced terrestrial organisms could be mobilized to naturally occurring Special Regions elsewhere on Mars. Two models were run, a primary model by researchers at the Lawrence Berkeley National Laboratory and a secondary model by researchers at the Jet Propulsion Laboratory, both of which were based on selected starting conditions for various surface composition cases that establish the worst-case scenario, including geological data collected by the Mars Science Laboratory at Gale Crater. The summary outputs of both modeling efforts showed similar results: that the introduction of the modeled heat source could temporarily create the conditions established for a Special Region, but that there would be no transport mechanism by which an introduced terrestrial microbe, even if it was active during the temporarily induced Special Region conditions, could be transported to a naturally occurring Special Region of Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Modelos Teóricos , Geradores de Radionuclídeos , Astronave/instrumentação , Microbiologia Ambiental , Contaminação de Equipamentos , Exobiologia/métodos , Temperatura Alta/efeitos adversos , Vapor/efeitos adversos , Volatilização
6.
Antarct Sci ; 30(1): 67-78, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32818010

RESUMO

The Antarctic Dry Valleys represent a unique environment where it is possible to study dry permafrost overlaying an ice-rich permafrost. In this paper, two opposing mechanisms for ice table stability in University Valley are addressed: i) diffusive recharge via thin seasonal snow deposits andii) desiccation via salt deposits in the upper soil column. A high-resolution time-marching soil and snow model was constructed and applied to University Valley, driven by meteorological station atmospheric measurements. It was found that periodic thin surficial snow deposits (observed in University Valley) are capable of drastically slowing (if not completely eliminating) the underlying ice table ablation. The effects of NaCl, CaCl2 and perchlorate deposits were then modelled. Unlike the snow cover, however, the presence of salt in the soil surface (but no periodic snow) results in a slight increase in the ice table recession rate, due to the hygroscopic effects of salt sequestering vapour from the ice table below. Near-surface pore ice frequently forms when large amounts of salt are present in the soil due to the suppression of the saturation vapour pressure. Implications for Mars high latitudes are discussed.

7.
Science ; 359(6372): 199-201, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29326269

RESUMO

Thick deposits cover broad regions of the Martian mid-latitudes with a smooth mantle; erosion in these regions creates scarps that expose the internal structure of the mantle. We investigated eight of these locations and found that they expose deposits of water ice that can be >100 meters thick, extending downward from depths as shallow as 1 to 2 meters below the surface. The scarps are actively retreating because of sublimation of the exposed water ice. The ice deposits likely originated as snowfall during Mars' high-obliquity periods and have now compacted into massive, fractured, and layered ice. We expect the vertical structure of Martian ice-rich deposits to preserve a record of ice deposition and past climate.


Assuntos
Meio Ambiente Extraterreno , Camada de Gelo , Marte
8.
Astrobiology ; 3(2): 343-50, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14577883

RESUMO

The availability of water-ice at the surface in the Mars polar cap and within the top meter of the high-latitude regolith raises the question of whether liquid water can exist there under some circumstances and possibly support the existence of biota. We examine the minimum temperatures at which liquid water can exist at ice grain-dust grain and ice grain-ice grain contacts, the minimum subfreezing temperatures at which terrestrial organisms can grow or multiply, and the maximum temperatures that can occur in martian high-latitude and polar regions, to see if there is overlap. Liquid water can exist at grain contacts above about -20 degrees C. Measurements of growth in organisms isolated from Siberian permafrost indicate growth at -10 degrees C and metabolism at -20 degrees C. Mars polar and high-latitude temperatures rise above -20 degrees C at obliquities greater than ~40 degrees, and under some conditions rise above 0 degrees C. Thus, the environment in the Mars polar regions has overlapped habitable conditions within relatively recent epochs, and Mars appears to be on the edge of being habitable at present. The easy accessibility of the polar surface layer relative to the deep subsurface make these viable locations to search for evidence of life.


Assuntos
Meio Ambiente , Meio Ambiente Extraterreno , Marte , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Gelo , Sibéria , Microbiologia da Água
9.
Astrobiology ; 14(11): 887-968, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25401393

RESUMO

A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.


Assuntos
Exobiologia , Marte , Voo Espacial , Bactérias/citologia , Bactérias/metabolismo , Divisão Celular , Temperatura Baixa , Metabolismo Energético , Meio Ambiente Extraterreno , Fungos/citologia , Fungos/metabolismo , Geografia , Humanos , Gelo , Viabilidade Microbiana , Oxigênio , Voo Espacial/instrumentação , Astronave , Termodinâmica , Raios Ultravioleta , Água , Leveduras/citologia , Leveduras/metabolismo
10.
Science ; 332(6031): 838-41, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21512003

RESUMO

Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO(2)) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO(2) volatile release. If released into the atmosphere at times of high obliquity, the CO(2) reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.


Assuntos
Gelo-Seco , Marte , Atmosfera , Dióxido de Carbono , Temperatura Baixa , Meio Ambiente Extraterreno , Gelo , Água
11.
Science ; 325(5948): 1674-6, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19779195

RESUMO

New impact craters at five sites in the martian mid-latitudes excavated material from depths of decimeters that has a brightness and color indicative of water ice. Near-infrared spectra of the largest example confirm this composition, and repeated imaging showed fading over several months, as expected for sublimating ice. Thermal models of one site show that millimeters of sublimation occurred during this fading period, indicating clean ice rather than ice in soil pores. Our derived ice-table depths are consistent with models using higher long-term average atmospheric water vapor content than present values. Craters at most of these sites may have excavated completely through this clean ice, probing the ice table to previously unsampled depths of meters and revealing substantial heterogeneity in the vertical distribution of the ice itself.


Assuntos
Gelo , Marte , Meio Ambiente Extraterreno , Meteoroides , Temperatura
12.
Science ; 320(5880): 1182-5, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18483402

RESUMO

The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed approximately 100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA