Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(6): 2309-2327, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35302640

RESUMO

Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin efflux machinery in plants. Over the last two decades, experimental studies have shown that modifying ATP-binding cassette sub-family B (ABCB) expression affects auxin distribution and plant phenotypes. However, precisely how ABCB proteins transport auxin in conjunction with the more widely studied family of PIN-formed (PIN) auxin efflux transporters is unclear, and studies using heterologous systems have produced conflicting results. Here, we integrate ABCB localization data into a multicellular model of auxin transport in the Arabidopsis thaliana root tip to predict how ABCB-mediated auxin transport impacts organ-scale auxin distribution. We use our model to test five potential ABCB-PIN regulatory interactions, simulating the auxin dynamics for each interaction and quantitatively comparing the predictions with experimental images of the DII-VENUS auxin reporter in wild-type and abcb single and double loss-of-function mutants. Only specific ABCB-PIN regulatory interactions result in predictions that recreate the experimentally observed DII-VENUS distributions and long-distance auxin transport. Our results suggest that ABCBs enable auxin efflux independently of PINs; however, PIN-mediated auxin efflux is predominantly through a co-dependent efflux where co-localized with ABCBs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo
2.
Development ; 147(6)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32229613

RESUMO

Auxin is a key signal regulating plant growth and development. It is well established that auxin dynamics depend on the spatial distribution of efflux and influx carriers on the cell membranes. In this study, we employ a systems approach to characterise an alternative symplastic pathway for auxin mobilisation via plasmodesmata, which function as intercellular pores linking the cytoplasm of adjacent cells. To investigate the role of plasmodesmata in auxin patterning, we developed a multicellular model of the Arabidopsis root tip. We tested the model predictions using the DII-VENUS auxin response reporter, comparing the predicted and observed DII-VENUS distributions using genetic and chemical perturbations designed to affect both carrier-mediated and plasmodesmatal auxin fluxes. The model revealed that carrier-mediated transport alone cannot explain the experimentally determined auxin distribution in the root tip. In contrast, a composite model that incorporates both carrier-mediated and plasmodesmatal auxin fluxes re-capitulates the root-tip auxin distribution. We found that auxin fluxes through plasmodesmata enable auxin reflux and increase total root-tip auxin. We conclude that auxin fluxes through plasmodesmata modify the auxin distribution created by efflux and influx carriers.


Assuntos
Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Distribuição Tecidual
3.
Methods Mol Biol ; 2395: 147-164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34822153

RESUMO

Hormone signals like auxin play a critical role controlling plant growth and development. Determining the mechanisms that regulate auxin distribution in cells and tissues is a vital step in understanding this hormone's role during plant development. Recent mathematical models have enabled us to understand the essential role that auxin influx and efflux carriers play in auxin transport in the Arabidopsis root tip (Band et al., Plant Cell 26(3):862-875, 2014; Grieneisen et al., Nature 449(7165):1008-1013, 2007; van den Berg et al., Development 143(18):3350-3362, 2016). In this chapter, we describe SimuPlant: The Virtual Root (SimuPlant, University of Nottingham. https://www.simuplant.org/ . Accessed 20 Sept 2019); an open source software suite, built using the OpenAlea (Pradal et al., Funct Plant Biol 35(10):751-760, 2008) framework, that is designed to simulate vertex-based models in real plant tissue geometries. We provide guidance on how to install SimuPlant, run 2D auxin transport models in the Arabidopsis root tip, manipulate parameters, and visualize model outputs.SimuPlant features a graphical user interface (GUI) designed to allow users with no programming experience to simulate auxin dynamics within the Arabidopsis root tip. Within the user interface, users of SimuPlant can select from a range of model assumptions and can choose to manipulate model and simulation parameter values. Users can then investigate how their choices affect the predicted distribution of auxin in the Arabidopsis root tip. The results of the model simulations are shown visually within the root geometry and can be exported and saved as PNG image files.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Hormônios , Ácidos Indolacéticos , Meristema/metabolismo , Modelos Teóricos , Raízes de Plantas/metabolismo , Plantas/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA