Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 118(51): 11852-70, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25054866

RESUMO

Recently we published [ Liu et al. J. Chem. Phys. 2013 , 139 , 154312 ] an analysis of the rotational structure of the B̃-X̃ origin band spectrum of isopropoxy, which confirmed that the double methyl substitution of methoxy to yield the isopropoxy radical only slightly lifted the degeneracy of the former's X̃(2)E state. Additionally the spectral results provided considerable insight into the relativistic and nonrelativistic contributions to the experimental splitting between the components of the (2)E state. However, left unexplained was how the Jahn-Teller (JT) vibronic coupling terms within methoxy's (2)E state manifest themselves as pseudo-Jahn-Teller (pJT) vibronic coupling between the Ã(2)A″ and X̃(2)A' levels of isopropoxy. To cast additional light on this subject we have obtained new isopropoxy spectra and assigned a number of weak, "forbidden" vibronic transitions in the B̃-X̃ spectrum using new electronic structure calculations and rotational contour analyses. The mechanisms that provide the nonzero probability for these transitions shed considerable information on pJT, spin-orbit, and Coriolis coupling between the à and X̃ states. We also report a novel mechanism caused by pJT coupling that yields excitation probability to the B̃ state dependent upon the permanent dipole moments in the B̃ and à or X̃ states. By combining a new B̃-à and the earlier B̃-X̃ rotational analyses we determine a much improved value for the experimental Ã-X̃ separation.

2.
J Chem Phys ; 135(9): 094310, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21913766

RESUMO

Rotationally resolved laser induced fluorescence and stimulated emission pumping Ã(2)A(1)-X̃(2)E spectra, along with pure rotational spectra in the 153-263 GHz region within the E(3/2) component of the ground state in asymmetrically deuterated methoxy radicals CH(2)DO and CHD(2)O have been observed. The combined data set allows for the direct measurement with high precision of the energy separation between the E(1/2) and E(3/2) components of the ground state and the energy separation between the parity stacks in the E(3/2) component of the ground state. The experimentally observed frequencies in both isotopologues are fit to an effective rotational Hamiltonian accounting for rotational and spin-rotational effects arising in a near-prolate asymmetric top molecule with dynamic Jahn-Teller distortion. Isotopic dependencies for the molecular parameters have been successfully implemented to aid the analysis of these very complex spectra. The analysis of the first and second order contributions to the effective values of molecular parameters has been extended to elucidate the physical significance of resulting molecular parameters. Comparisons of measured parameters, e.g., spin-orbit coupling, rotational and spin-rotation constants, are made among the 5 methoxy isotopologues for which data is now available. Comparisons of experimental results, including the derived geometric structure at both the C(3v) conical intersection and at the Jahn-Teller distorted minima, are made with quantum chemistry calculations.

3.
Science ; 320(5878): 881-2, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18487179
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA