Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0305705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941305

RESUMO

Ad hoc teamwork is a research topic in multi-agent systems whereby an agent (the "ad hoc agent") must successfully collaborate with a set of unknown agents (the "teammates") without any prior coordination or communication protocol. However, research in ad hoc teamwork is predominantly focused on agent-only teams, but not on agent-human teams, which we believe is an exciting research avenue and has enormous application potential in human-robot teams. This paper will tap into this potential by proposing HOTSPOT, the first framework for ad hoc teamwork in human-robot teams. Our framework comprises two main modules, addressing the two key challenges in the interaction between a robot acting as the ad hoc agent and human teammates. First, a decision-theoretic module that is responsible for all task-related decision-making (task identification, teammate identification, and planning). Second, a communication module that uses natural language processing to parse all communication between the robot and the human. To evaluate our framework, we use a task where a mobile robot and a human cooperatively collect objects in an open space, illustrating the main features of our framework in a real-world task.


Assuntos
Comportamento Cooperativo , Robótica , Humanos , Tomada de Decisões , Comunicação
2.
Top Cogn Sci ; 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36573665

RESUMO

Creating effective teamwork between humans and robots involves not only addressing their performance as a team but also sustaining the quality and sense of unity among teammates, also known as cohesion. This paper explores the research problem of: how can we endow robotic teammates with social capabilities to improve the cohesive alliance with humans? By defining the concept of a human-robot cohesive alliance in the light of the multidimensional construct of cohesion from the social sciences, we propose to address this problem through the idea of multifaceted human-robot cohesion. We present our preliminary effort from previous works to examine each of the five dimensions of cohesion: social, collective, emotional, structural, and task. We finish the paper with a discussion on how human-robot cohesion contributes to the key questions and ongoing challenges of creating robotic teammates. Overall, cohesion in human-robot teams might be a key factor to propel team performance and it should be considered in the design, development, and evaluation of robotic teammates.

3.
Neural Netw ; 146: 238-255, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34906760

RESUMO

This work addresses the problem of cross-modality inference (CMI), i.e., inferring missing data of unavailable perceptual modalities (e.g., sound) using data from available perceptual modalities (e.g., image). We overview single-modality variational autoencoder methods and discuss three problems of computational cross-modality inference, arising from recent developments in multimodal generative models. Inspired by neural mechanisms of human recognition, we contribute the Nexus model, a novel hierarchical generative model that can learn a multimodal representation of an arbitrary number of modalities in an unsupervised way. By exploiting hierarchical representation levels, Nexus is able to generate high-quality, coherent data of missing modalities given any subset of available modalities. To evaluate CMI in a natural scenario with a high number of modalities, we contribute the "Multimodal Handwritten Digit" (MHD) dataset, a novel benchmark dataset that combines image, motion, sound and label information from digit handwriting. We access the key role of hierarchy in enabling high-quality samples during cross-modality inference and discuss how a novel training scheme enables Nexus to learn a multimodal representation robust to missing modalities at test time. Our results show that Nexus outperforms current state-of-the-art multimodal generative models in regards to their cross-modality inference capabilities.

4.
Front Robot AI ; 9: 784249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356059

RESUMO

Social robots have been shown to be promising tools for delivering therapeutic tasks for children with Autism Spectrum Disorder (ASD). However, their efficacy is currently limited by a lack of flexibility of the robot's social behavior to successfully meet therapeutic and interaction goals. Robot-assisted interventions are often based on structured tasks where the robot sequentially guides the child towards the task goal. Motivated by a need for personalization to accommodate a diverse set of children profiles, this paper investigates the effect of different robot action sequences in structured socially interactive tasks targeting attention skills in children with different ASD profiles. Based on an autism diagnostic tool, we devised a robotic prompting scheme on a NAO humanoid robot, aimed at eliciting goal behaviors from the child, and integrated it in a novel interactive storytelling scenario involving screens. We programmed the robot to operate in three different modes: diagnostic-inspired (Assess), personalized therapy-inspired (Therapy), and random (Explore). Our exploratory study with 11 young children with ASD highlights the usefulness and limitations of each mode according to different possible interaction goals, and paves the way towards more complex methods for balancing short-term and long-term goals in personalized robot-assisted therapy.

5.
Front Artif Intell ; 4: 625183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604737

RESUMO

In this paper, we propose the first machine teaching algorithm for multiple inverse reinforcement learners. As our initial contribution, we formalize the problem of optimally teaching a sequential task to a heterogeneous class of learners. We then contribute a theoretical analysis of such problem, identifying conditions under which it is possible to conduct such teaching using the same demonstration for all learners. Our analysis shows that, contrary to other teaching problems, teaching a sequential task to a heterogeneous class of learners with a single demonstration may not be possible, as the differences between individual agents increase. We then contribute two algorithms that address the main difficulties identified by our theoretical analysis. The first algorithm, which we dub SplitTeach, starts by teaching the class as a whole until all students have learned all that they can learn as a group; it then teaches each student individually, ensuring that all students are able to perfectly acquire the target task. The second approach, which we dub JointTeach, selects a single demonstration to be provided to the whole class so that all students learn the target task as well as a single demonstration allows. While SplitTeach ensures optimal teaching at the cost of a bigger teaching effort, JointTeach ensures minimal effort, although the learners are not guaranteed to perfectly recover the target task. We conclude by illustrating our methods in several simulation domains. The simulation results agree with our theoretical findings, showcasing that indeed class teaching is not possible in the presence of heterogeneous students. At the same time, they also illustrate the main properties of our proposed algorithms: in all domains, SplitTeach guarantees perfect teaching and, in terms of teaching effort, is always at least as good as individualized teaching (often better); on the other hand, JointTeach attains minimal teaching effort in all domains, even if sometimes it compromises the teaching performance.

6.
Artif Intell Med ; 96: 198-216, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30598330

RESUMO

This paper describes the INSIDE system, a networked robot system designed to allow the use of mobile robots as active players in the therapy of children with autism spectrum disorders (ASD). While a significant volume of work has explored the impact of robots in ASD therapy, most such work comprises remotely operated robots and/or well-structured interaction dynamics. In contrast, the INSIDE system allows for complex, semi-unstructured interaction in ASD therapy while featuring a fully autonomous robot. In this paper we describe the hardware and software infrastructure that supports such rich form of interaction, as well as the design methodology that guided the development of the INSIDE system. We also present some results on the use of our system both in pilot and in a long-term study comprising multiple therapy sessions with children at Hospital Garcia de Orta, in Portugal, highlighting the robustness and autonomy of the system as a whole.


Assuntos
Transtorno do Espectro Autista/terapia , Relações Interpessoais , Robótica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA