Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0266891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421196

RESUMO

Citrus canker is one of the main bacterial diseases that affect citrus crops and is caused by Xanthomonas citri which affects all citrus species worldwide. New strategies to control citrus canker are necessary and the use of bacteriophages as biocontrol agent could be an alternative. Phages that infect Xanthomonas species have been studied, such as XacN1, a myovirus that infects X. citri. Here we report the isolation and characterization of a new jumbo phage, vb_XciM_LucasX, which infects X. citri and X. fuscans. Transmission electron microscopy allowed classification of LucasX in the Myoviridae family, which was corroborated by its genomic sequencing, annotation, and proteome clustering. LucasX has a 305,651 bp-long dsDNA genome. ORF prediction and annotation revealed 157 genes encoding putative structural proteins such as capsid and tail related proteins and phage assembly associated proteins, however, for most of the structural proteins it was not possible assign specific functions. Its genome encodes several proteins related to DNA replication and nucleotide metabolism, five putative RNA polymerases, at least one homing endonuclease mobile element, a terminase large subunit (TerL), an endolysin and many proteins classified as beneficial to the host. Proteome clustering and phylogeny analyses showed that LucasX is a new jumbo phage having as its closest neighbor the Xanthomonas jumbo phage Xoo-sp14. LucasX presented a burst size of 40 PFU/infected cell of X. citri 306, was completely inactivated at temperatures above 50°C, presented survival lower than 25% after 80 s of exposition to artificial UV light and had practically no tolerance to concentrations above 2.5 g/L NaCl or 40% ethanol. LucasX presented optimum pH at 7 and a broad range of Xanthomonas hosts, infecting twenty-one of the twenty-three strains tested. Finally, the LucasX yield was dependent on the host strain utilized, resulting one order of magnitude higher in X. fuscans C 752 than in X. citri 306, which points out to the possibility of phage yield improvement, an usual challenge for biocontrol purposes.


Assuntos
Bacteriófagos , Citrus , Xanthomonas , Citrus/microbiologia , Myoviridae , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Proteoma , Xanthomonas/genética
3.
PLoS One ; 14(1): e0209988, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30615696

RESUMO

Citrus canker is a plant disease caused by the bacteria Xanthomonas citri subsp. citri that affects all domestic varieties of citrus. Some annotated genes from the X. citri subsp. citri genome are assigned to an interesting class named "pathogenicity, virulence and adaptation". Amongst these is sodM, which encodes for the gene product XcSOD, one of four superoxide dismutase homologs predicted from the genome. SODs are widespread enzymes that play roles in the oxidative stress response, catalyzing the degradation of the deleterious superoxide radical. In Xanthomonas, SOD has been associated with pathogenesis as a counter measure against the plant defense response. In this work we initially present the 1.8 Å crystal structure of XcSOD, a manganese containing superoxide dismutase from Xanthomonas citri subsp. citri. The structure bears all the hallmarks of a dimeric member of the MnSOD family, including the conserved hydrogen-bonding network residues. Despite the apparent gene redundancy, several attempts to obtain a sodM deletion mutant were unsuccessful, suggesting the encoded protein to be essential for bacterial survival. This intriguing observation led us to extend our structural studies to the remaining three SOD homologs, for which comparative models were built. The models imply that X. citri subsp. citri produces an iron-containing SOD which is unlikely to be catalytically active along with two conventional Cu,ZnSODs. Although the latter are expected to possess catalytic activity, we propose they may not be able to replace XcSOD for reasons such as distinct subcellular compartmentalization or differential gene expression in pathogenicity-inducing conditions.


Assuntos
Proteínas de Bactérias/química , Superóxido Dismutase/química , Xanthomonas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Genes Essenciais , Modelos Moleculares , Conformação Proteica , Superóxido Dismutase/genética , Xanthomonas/genética , Xanthomonas/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA