Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Neurosci ; 128(11): 1078-1085, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29724119

RESUMO

Aim: Many particularities concerning interhemispheric differences still need to be explored and unveiled. Functional and anatomical differential features found between left and right brain sides are best known as asymmetries and are consequence of the unilateral neuronal recruitment or predominance that is set to organize some function. The outflow from different neural pathways involved in the autonomic control of the cardiovascular system may route through asymmetrically relayed efferences (ipsilateral/lateralized and/or contralateral). In spite of this, the literature reporting on the role of central nuclei involved in the autonomic control is not always dedicated on these interhemispheric comparisons. Considering the recent reports demonstrating that asymmetries may set differential functional responses, it is worth checking differences between right and left sides of central regions. This review aims to inspire neuroscientists with the idea that studying the interhemispheric differences may deepen the understanding on several centrally controlled responses, with special regard to the autonomic functions underlying the cardiovascular regulation. Conclusions: Thus, an avenue of knowledge may unfold from a field of research that requires further exploration.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Córtex Cerebral/fisiologia , Lateralidade Funcional/fisiologia , Neurociências/tendências , Animais , Sistema Nervoso Autônomo/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Córtex Cerebral/fisiopatologia , Humanos , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , Neurociências/métodos
2.
Curr Res Food Sci ; 6: 100410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545514

RESUMO

Beans reached the research spotlight as a source of bioactive compounds capable of modulating different functions. Recently, we reported antioxidant and oxidonitrergic effect of a low molecular weight peptide fraction (<3 kDa) from hardened bean (Phaseolus vulgaris) in vitro and ex vivo, which necessitate further in vivo assessments. This work aimed to evaluate the hypotensive effect and the involved physiological mechanisms of the hardened common bean peptide (Phaseolus vulgaris) in normotensive (Wistar) and hypertensive (SHR) animals. Bean flour was combined with a solution containing acetonitrile, water and formic acid (25: 24: 1). Protein extract (PV3) was fractioned (3 kDa membrane). We assessed PV3 effects on renal function and hemodynamics of wistar (WT-normotensive) and spontaneously hypertensive rats (SHR) and measured systemic arterial pressure and flow in aortic and renal beds. The potential endothelial and oxidonitrergic involvements were tested in isolated renal artery rings. As results, we found that PV3: I) decreased food consumption in SHR, increased water intake and urinary volume in WT, increased glomerular filtration rate in WT and SHR, caused natriuresis in SHR; II) caused NO- and endothelium-dependent vasorelaxation in renal artery rings; III) reduced arterial pressure and resistance in aortic and renal vascular beds; IV) caused antihypertensive effects in a dose-dependent manner. Current findings support PV3 as a source of bioactive peptides and raise the potential of composing nutraceutical formulations to treat renal and cardiovascular diseases.

3.
Braz J Psychiatry ; 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896170

RESUMO

Follow-up of patients affected by COVID-19 has unveiled remarkable findings. Among the several sequelae caused by SARS-CoV-2 viral infection, it is particularly noteworthy that patients are prone to developing depression, anxiety, cognitive disorders, and dementia as part of the post-COVID-19 syndrome. The multisystem aspects of this disease suggest that multiple mechanisms may converge towards post-infection clinical manifestations. The literature provides mechanistic hypotheses related to changes in classical neurotransmission evoked by SARS-CoV-2 infection; nonetheless, the interaction of peripherally originated classical and non-canonic peptidergic systems may play a putative role in this neuropathology. A wealth of robust findings shows that hemoglobin-derived peptides are able to control cognition, memory, anxiety, and depression through different mechanisms. Early erythrocytic death is found during COVID-19, which would cause excess production of hemoglobin-derived peptides. Following from this premise, the present review sheds light on a possible involvement of hemoglobin-derived molecules in the COVID-19 pathophysiology by fostering neuroscientific evidence that supports the contribution of this non-canonic peptidergic pathway. This rationale may broaden knowledge beyond the currently available data, motivating further studies in the field and paving ways for novel laboratory tests and clinical approaches.

4.
Peptides ; 158: 170862, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35998722

RESUMO

Previous studies have suggested that the Angiotensin-(1-7) [(Ang-(1-7)] can change cardiac function by modulating the autonomic nervous system. However, it is unknown whether the Ang-(1-7) can modulate the effect of acetylcholine (ACh) in ventricular contractility. Thus, this study aimed to investigate whether Ang-(1-7) modifies the amplitude of the cardiac cholinergic effects and if these effects are intrinsic to the heart. In anesthetized Wistar rats, Ang-(1-7) attenuated the effect of ACh in decreasing the left ventricular end-systolic pressure (LVESP), dP/dtmax, and dP/dtmin, but did not modify the hypotensive effect of ACh. Similarly, Ang-(1-7) attenuated the reduction of the LVESP, dP/dtmax, and dP/dtmin evoked by ACh in isolated hearts. These effects were blocked by the Mas receptor antagonist, A-779, but not by the adenylyl cyclase inhibitor MDL-12,330 A. Ang-(1-7) also attenuated the reduction in the maximum contraction and relaxation speeds and the shortening promoted by ACh in isolated cardiomyocytes. These data show that Ang-(1-7) acting through Mas receptor counter-regulates the myocardial contractile response to ACh in an arterial pressure and heart rate-independent manner.


Assuntos
Acetilcolina , Contração Miocárdica , Ratos , Animais , Acetilcolina/farmacologia , Ratos Wistar , Coração , Miócitos Cardíacos , Angiotensina II/farmacologia
5.
Hematol Transfus Cell Ther ; 44(2): 235-245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35098037

RESUMO

Introduction: The evolving COVID-19 pandemic became a hallmark in human history, not only by changing lifestyles, but also by enriching scientific knowledge on viral infection and its consequences. Objective: Although the management of cardiorespiratory changes is pivotal to a favorable prognosis during severe clinical findings, dysregulation of other systems caused by SARS-CoV-2 infection may imbalance erythrocyte dynamics, such as a bidirectional positive feedback loop pathophysiology. Method and Results: Recent evidence shows that SARS-CoV-2 is capable of affecting the genetics and dynamics of erythrocytes and this coexists with a non-homeostatic function of cardiovascular, respiratory and renal systems during COVID-19. In hypothesis, SARS-CoV-2-induced systematical alterations of erythrocytes dynamics would constitute a setpoint for COVID-19-related multiple organ failure syndrome and death. Conclusion: The present review covers the most frequent erythrocyte-related non-homeostatic findings during COVID-19 capable of providing mechanistic clues of SARS-CoV-2-induced infection and inspiring therapeutic-oriented scientific evidence.

6.
Mol Cell Endocrinol ; 518: 110984, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814069

RESUMO

Ghrelin is a peptide hormone whose effects are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), mainly expressed in the brain but also in kidneys. The hypothesis herein raised is that GHS-R1a would be player in the renal contribution to the neurogenic hypertension pathophysiology. To investigate GHS-R1a role on renal function and hemodynamics, we used Wistar (WT) and spontaneously hypertensive rats (SHR). First, we assessed the effect of systemically injected vehicle, ghrelin, GHS-R1a antagonist PF04628935, ghrelin plus PF04628935 or GHS-R1a synthetic agonist MK-677 in WT and SHR rats housed in metabolic cages (24 h). Blood and urine samples were also analyzed. Then, we assessed the GHS-R1a contribution to the control of renal vasomotion and hemodynamics in WT and SHR. Finally, we assessed the GHS-R1a levels in brain areas, aorta, renal artery, renal cortex and medulla of WT and SHR rats using western blot. We found that ghrelin and MK-677 changed osmolarity parameters of SHR, in a GHS-R1a-dependent manner. GHS-R1a antagonism reduced the urinary Na+ and K+ and creatinine clearance in WT but not in SHR. Ghrelin reduced arterial pressure and increased renal artery conductance in SHR. GHS-R1a protein levels were decreased in the kidney and brain areas of SHR when compared to WT. Therefore, GHS-R1a role in the control of renal function and hemodynamics during neurogenic hypertension seem to be different, and this may be related to brain and kidney GHS-R1a downregulation.


Assuntos
Encéfalo/metabolismo , Grelina/administração & dosagem , Hipertensão/fisiopatologia , Imidazóis/administração & dosagem , Indóis/administração & dosagem , Rim/metabolismo , Receptores de Grelina/metabolismo , Compostos de Espiro/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Grelina/farmacologia , Hemodinâmica , Hipertensão/metabolismo , Hipertensão/urina , Imidazóis/farmacologia , Indóis/farmacologia , Rim/efeitos dos fármacos , Rim/fisiopatologia , Testes de Função Renal , Masculino , Potássio/urina , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Receptores de Grelina/antagonistas & inibidores , Sódio/urina , Compostos de Espiro/farmacologia
7.
Peptides ; 115: 59-68, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30890354

RESUMO

LVV-hemorphin-6 (LVV-h6) is bioactive peptide and is a product of the degradation of hemoglobin. Since LVV-h6 effects are possibly mediated by opioid or AT4/IRAP receptors, we hypothesized that LVV-h6 would modify behavior. We evaluated whether LVV-h6 affects: i) anxiety-like behavior and locomotion; ii) depression-like behavior; iii) cardiovascular and neuroendocrine reactivity to emotional stress. Male Wistar rats ( ± 300 g) received LVV-h6 (153 nmol/kg i.p.) or vehicle (NaCl 0.9% i.p.). We used: i) open field (OF) test for locomotion; ii) elevated plus maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) for depression-like behavior and iv) air jet for cardiovascular and neuroendocrine reactivity to stress. Diazepam (2 mg/kg i.p.) and imipramine (15 mg/kg i.p.) were used as positive control for EPM and FST, respectively. To evaluate the LVV-h6 mechanisms, we used: the antagonist of oxytocin (OT) receptors (atosiban - ATS 1 and 0.1 mg/kg i.p.); the inhibitor of tyrosine hydroxylase (Alpha-methyl-p-tyrosine - AMPT 200 mg/kg i.p.) to investigate the involvement of catecholaminergic paths; and the antagonist of opioid receptors (naltrexone - NTX 0.3 mg/kg s.c.). We found that LVV-h6: i) evoked anxiolytic-like effect; ii) evoked antidepressant-like effect in the FST; and iii) did not change the locomotion, neuroendocrine and cardiovascular responses to stress. The LVV-h6 anxiolytic-like effect was not reverted by ATS and AMPT. However, the antidepressant effects were reverted only by NTX. Hence, our findings demonstrate that LVV-h6 modulates anxiety-like behavior by routes that are not oxytocinergic, catecholaminergic or opioid. The antidepressant-like effects of LVV-h6 rely on opioid pathways.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Ansiedade , Comportamento Animal/classificação , Depressão , Hemoglobinas/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/fisiopatologia , Masculino , Ratos , Ratos Wistar
8.
Life Sci ; 196: 84-92, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29366747

RESUMO

Prior evidence indicates that ghrelin is involved in the integration of cardiovascular functions and behavioral responses. Ghrelin actions are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), which is expressed in peripheral tissues and central areas involved in the control of cardiovascular responses to stress. AIMS: In the present study, we assessed the role of ghrelin - GHS-R1a axis in the cardiovascular reactivity to acute emotional stress in rats. MAIN METHODS AND KEY FINDINGS: Ghrelin potentiated the tachycardia evoked by restraint and air jet stresses, which was reverted by GHS-R1a blockade. Evaluation of the autonomic balance revealed that the sympathetic branch modulates the ghrelin-evoked positive chronotropy. In isolated hearts, the perfusion with ghrelin potentiated the contractile responses caused by stimulation of the beta-adrenergic receptor, without altering the amplitude of the responses evoked by acetylcholine. Experiments in isolated cardiomyocytes revealed that ghrelin amplified the increases in calcium transient changes evoked by isoproterenol. SIGNIFICANCE: Taken together, our results indicate that the Ghrelin-GHS-R1a axis potentiates the magnitude of stress-evoked tachycardia by modulating the autonomic nervous system and peripheral mechanisms, strongly relying on the activation of cardiac calcium transient and beta-adrenergic receptors.


Assuntos
Grelina/farmacologia , Coração/efeitos dos fármacos , Receptores Adrenérgicos beta/efeitos dos fármacos , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Canais de Cálcio/efeitos dos fármacos , Coração/inervação , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Masculino , Agonistas Muscarínicos/farmacologia , Ratos , Ratos Wistar , Receptores de Grelina/efeitos dos fármacos , Restrição Física , Taquicardia/induzido quimicamente , Taquicardia/fisiopatologia
9.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 44(4): 434-440, July-Aug. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394070

RESUMO

Follow-up of patients affected by COVID-19 has unveiled remarkable findings. Among the several sequelae caused by SARS-CoV-2 viral infection, it is particularly noteworthy that patients are prone to developing depression, anxiety, cognitive disorders, and dementia as part of the post-COVID-19 syndrome. The multisystem aspects of this disease suggest that multiple mechanisms may converge towards post-infection clinical manifestations. The literature provides mechanistic hypotheses related to changes in classical neurotransmission evoked by SARS-CoV-2 infection; nonetheless, the interaction of peripherally originated classical and non-canonic peptidergic systems may play a putative role in this neuropathology. A wealth of robust findings shows that hemoglobin-derived peptides are able to control cognition, memory, anxiety, and depression through different mechanisms. Early erythrocytic death is found during COVID-19, which would cause excess production of hemoglobin-derived peptides. Following from this premise, the present review sheds light on a possible involvement of hemoglobin-derived molecules in the COVID-19 pathophysiology by fostering neuroscientific evidence that supports the contribution of this non-canonic peptidergic pathway. This rationale may broaden knowledge beyond the currently available data, motivating further studies in the field and paving ways for novel laboratory tests and clinical approaches.

10.
Neuropeptides ; 66: 59-68, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28985964

RESUMO

LVV-hemorphin-7 (LVV-h7) is bioactive peptide resulting from degradation of hemoglobin ß-globin chain. LVV-h7 is a specific agonist of angiotensin IV receptor. This receptor belongs to the class of insulin-regulated aminopeptidases (IRAP), which displays oxytocinase activity. Herein, our aims were to assess whether: i) LVV-h7 modifies centrally organized behavior and cardiovascular responses to stress and ii) mechanisms underlying LVV-h7 effects involve activation of oxytocin (OT) receptors, probably as result of reduction of IRAP proteolytic activity upon OT. Adult male Wistar rats (270-370g) received (i.p.) injections of LVV-h7 (153nmol/kg), or vehicle (0.1ml). Different protocols were used: i) open field (OP) test for locomotor/exploratory activities; ii) Elevated Plus Maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) test for depression-like behavior and iv) air jet for cardiovascular reactivity to acute stress exposure. Diazepam (2mg/kg) and imipramine (15mg/kg) were used as positive control for EPM and FST, respectively. The antagonist of OT receptors (OTr), atosiban (1 and 0,1mg/kg), was used to determine the involvement of oxytocinergic paths. We found that LVV-h7: i) increased the number of entries and the time spent in open arms of the maze, an indicative of anxiolysis; ii) provoked antidepressant effect in the FS test; and iii) increased the exploration and locomotion; iv) did not change the cardiovascular reactivity and neuroendocrine responses to acute stress. Also, increases in locomotion and the antidepressant effects evoked by LVV-h7 were reverted by OTr antagonist. We conclude that LVV-h7 modulates behavior, displays antidepressant and anxiolytic effects that are mediated in part by oxytocin receptors.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Hemoglobinas/farmacologia , Atividade Motora/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores de Ocitocina/metabolismo , Animais , Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Diazepam/farmacologia , Hemoglobinas/uso terapêutico , Antagonistas de Hormônios/farmacologia , Imipramina/farmacologia , Masculino , Fragmentos de Peptídeos/uso terapêutico , Ratos , Ratos Wistar , Receptores de Ocitocina/antagonistas & inibidores , Vasotocina/análogos & derivados , Vasotocina/farmacologia
11.
Hematol., Transfus. Cell Ther. (Impr.) ; 44(2): 235-245, Apr.-June 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1385065

RESUMO

Abstract Introduction The evolving COVID-19 pandemic became a hallmark in human history, not only by changing lifestyles, but also by enriching scientific knowledge on viral infection and its consequences. Objective Although the management of cardiorespiratory changes is pivotal to a favorable prognosis during severe clinical findings, dysregulation of other systems caused by SARS-CoV-2 infection may imbalance erythrocyte dynamics, such as a bidirectional positive feedback loop pathophysiology. Method and Results Recent evidence shows that SARS-CoV-2 is capable of affecting the genetics and dynamics of erythrocytes and this coexists with a non-homeostatic function of cardiovascular, respiratory and renal systems during COVID-19. In hypothesis, SARS-CoV-2-induced systematical alterations of erythrocytes dynamics would constitute a setpoint for COVID-19-related multiple organ failure syndrome and death. Conclusion The present review covers the most frequent erythrocyte-related non-homeostatic findings during COVID-19 capable of providing mechanistic clues of SARS-CoV-2-induced infection and inspiring therapeutic-oriented scientific evidence.


Assuntos
Eritrócitos , SARS-CoV-2 , COVID-19/mortalidade , Prognóstico , Hemoglobinas , Doenças Hematológicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA