Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Exp Dermatol ; 25(4): 269-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26739954

RESUMO

Epidermolysis bullosa with pyloric atresia (EB-PA) is a rare autosomal recessive hereditary disease with a variable prognosis from lethal to very mild. EB-PA is classified into Simplex form (EBS-PA: OMIM #612138) and Junctional form (JEB-PA: OMIM #226730), and it is caused by mutations in ITGA6, ITGB4 and PLEC genes. We report the analysis of six patients with EB-PA, including two dizygotic twins. Skin immunofluorescence epitope mapping was performed followed by PCR and direct sequencing of the ITGB4 gene. Two of the patients presented with non-lethal EB-PA associated with missense ITGB4 gene mutations. For the other four, early postnatal demise was associated with complete lack of ß4 integrin due to a variety of ITGB4 novel mutations (2 large deletions, 1 splice-site mutation and 3 missense mutations). One of the deletions spanned 278 bp, being one of the largest reported to date for this gene. Remarkably, we also found for the first time a founder effect for one novel mutation in the ITGB4 gene. We have identified 6 novel mutations in the ITGB4 gene to be added to the mutation database. Our results reveal genotype-phenotype correlations that contribute to the molecular understanding of this heterogeneous disease, a pivotal issue for prognosis and for the development of novel evidence-based therapeutic options for EB management.


Assuntos
Displasia Ectodérmica/genética , Integrina beta4/genética , Deleção de Sequência , Biópsia , Pré-Escolar , Análise Mutacional de DNA , Displasia Ectodérmica/diagnóstico , Mapeamento de Epitopos , Epitopos/química , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Queratinócitos/citologia , Masculino , Repetições de Microssatélites/genética , Microscopia de Fluorescência , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase , Prognóstico , Análise de Sequência de DNA , Gêmeos Dizigóticos
2.
FASEB J ; 28(2): 692-704, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24174428

RESUMO

The aim of this study was to identify the molecular signals produced in human endothelial cells (ECs) by the interaction of α5ß1 integrin with soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) present in the extracellular matrix. We generated a gene expression profile of ECs adhering to sVEGFR-1 or to fibronectin, the classic extracellular matrix ligand for α5ß1 integrin or in a nonadhering condition. Several biological pathways were differently modulated, 3 protein kinase C substrates [adducin, myristoylated alanine-rich protein kinase C substrate (MARCKS), and radixin] were differently expressed and phosphorylated when cells adhering to sVEGFR-1 were compared with those adhering to fibronectin. Rac1 activation and Gα13 protein involvement through the interaction with radixin were also detected after attachment to sVEGFR-1, and these responses depended on active VEGFR-2 signaling. On sVEGFR-1, ECs exhibited a motile phenotype that was consistent with the abundant presence of MARCKS, a stabilizer of dynamic adhesions. Moreover, ECs silenced for radixin expression no longer responded to the proangiogenic VEGFR-1-derived peptide 12. We propose that the presence of sVEGFR-1 in the EC microenvironment directs α5ß1 integrin signaling to generate a dynamic, motile phenotype. Our findings also provide new insights into the mechanism of action of proangiogenic peptide 12, relevant to a therapeutic perspective.


Assuntos
Adesão Celular/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Western Blotting , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Fibronectinas/metabolismo , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
3.
Carcinogenesis ; 35(5): 1110-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24374827

RESUMO

Incidence of cutaneous squamous cell carcinomas (cSCCs) constantly increases in the Caucasian population. Developing preferentially on precancerous lesions such as actinic keratoses due to chronic sunlight exposure, cSCCs result from the malignant transformation of keratinocytes. Although a resection of the primary tumor is usually curative, a subset of aggressive cSCCs shows a high risk of recurrence and metastases. The characterization of the molecular dysfunctions involved in cSCC development should help to identify new relevant targets against these aggressive cSCCs. In that context, we have used small RNA sequencing to identify 100 microRNAs (miRNAs) whose expression was altered during chemically induced mouse skin tumorigenesis. The decreased expression of the miR-193b/365a cluster during tumor progression suggests a tumor suppressor role. Ectopic expression of these miRNAs in tumor cells indeed inhibited their proliferation, clonogenic potential and migration, which were stimulated in normal keratinocytes when these miRNAs were blocked with antisense oligonucleotides. A combination of in silico predictions and transcriptome analyses identified several target genes of interest. We validated KRAS and MAX as direct targets of miR-193b and miR-365a. Repression of these targets using siRNAs mimicked the effects of miR-193b and miR-365a, suggesting that these genes might mediate, at least in part, the tumor-suppressive action of these miRNAs.


Assuntos
Carcinoma de Células Escamosas/genética , MicroRNAs/genética , Família Multigênica , Neoplasias Cutâneas/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes ras , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , MicroRNAs/metabolismo , Estadiamento de Neoplasias , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
4.
J Cell Sci ; 125(Pt 18): 4241-52, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22641690

RESUMO

In culture, cell confluence generates signals that commit actively growing keratinocytes to exit the cell cycle and differentiate to form a stratified epithelium. Using a comparative proteomic approach, we studied this 'confluence switch' and identified a new pathway triggered by cell confluence that regulates basement membrane (BM) protein composition by suppressing the uPA-uPAR-plasmin pathway. Indeed, confluence triggers adherens junction maturation and enhances TGF-ß and activin A activity, resulting in increased deposition of PAI-1 and perlecan in the BM. Extracellular matrix (ECM)-accumulated PAI-1 suppresses the uPA-uPAR-plasmin pathway and further enhances perlecan deposition by inhibiting its plasmin-dependent proteolysis. We show that perlecan deposition in the ECM strengthens cell adhesion, inhibits keratinocyte motility and promotes additional accumulation of PAI-1 in the ECM at confluence. In agreement, during wound-healing, perlecan concentrates at the wound-margin, where BM matures to stabilize keratinocyte adhesion. Our results demonstrate that confluence-dependent signaling orchestrates not only growth inhibition and differentiation, but also controls ECM proteolysis and BM formation. These data suggest that uncontrolled integration of confluence-dependent signaling, might favor skin disorders, including tumorigenesis, not only by promoting cell hyperproliferation, but also by altering protease activity and deposition of ECM components.


Assuntos
Matriz Extracelular/metabolismo , Fibrinolisina/metabolismo , Queratinócitos/metabolismo , Proteólise , Transdução de Sinais , Ativinas/metabolismo , Junções Aderentes/metabolismo , Animais , Membrana Basal/metabolismo , Adesão Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Regulação para Baixo , Retroalimentação Fisiológica , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Queratinócitos/patologia , Camundongos , Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ligação Proteica , Proteômica , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Cicatrização
5.
Med Sci (Paris) ; 30(4): 391-7, 2014 Apr.
Artigo em Francês | MEDLINE | ID: mdl-24801033

RESUMO

Cellular and molecular crosstalks between cancer and non-cancer tumor-associated cells result in tumor growth and metastatic spreading. During carcinoma development, tumor cells secrete signaling molecules that influence the surrounding non-cancer cells, which, in return, favor tumor cell growth, survival, migration and metastasis. Carcinoma-associated fibroblasts (CAF) are the most abundant population of non-cancer cells found in tumors, and their presence is often associated with poor clinical prognosis. Here, we summarize the pro-carcinogenic roles of CAF cells during carcinogenesis, with a specific focus on their abilities to drive cancer cell-dependent pro-invasive extracellular matrix remodeling.


Assuntos
Fibroblastos , Invasividade Neoplásica/patologia , Neoplasias/patologia , Microambiente Tumoral , Humanos
6.
Circ Res ; 109(2): 172-82, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21474814

RESUMO

RATIONALE: Integrins play a crucial role in controlling endothelial cell proliferation and migration during angiogenesis. The Delta-like 4 (Dll4)/Notch pathway establishes an adequate ratio between stalk and tip cell populations by restricting tip cell formation through "lateral inhibition" in response to a vascular endothelial growth factor gradient. Because angiogenesis requires a tight coordination of these cellular processes, we hypothesized that adhesion, vascular endothelial growth factor, and Notch signaling pathways are interconnected. OBJECTIVE: This study was aimed at characterizing the cross-talk between integrin and Notch signaling in endothelial cells. METHODS AND RESULTS: Adhesion of primary human endothelial cells to laminin-111 triggers Dll4 expression, leading to subsequent Notch pathway activation. SiRNA-mediated knockdown of α2ß1 and α6ß1 integrins abolishes Dll4 induction, which discloses a selective integrin signaling acting upstream of Notch pathway. The increase in Foxc2 transcription, triggered by α2ß1 binding to laminin, is required but not sufficient per se for Dll4 expression. Furthermore, vascular endothelial growth factor stimulates laminin γ1 deposition, which leads to integrin signaling and Dll4 induction. Interestingly, loss of integrins α2 or α6 mimics the effects of Dll4 silencing and induces excessive network branching in an in vitro sprouting angiogenesis assay on three-dimensional matrigel. CONCLUSIONS: We show that, in endothelial cells, ligation of α2ß1 and α6ß1 integrins induces the Notch pathway, and we disclose a novel role of basement membrane proteins in the processes controlling tip vs stalk cell selection.


Assuntos
Células Endoteliais/metabolismo , Integrina alfa2beta1/metabolismo , Integrina alfa6beta1/metabolismo , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Membrana Basal , Proteínas de Ligação ao Cálcio , Adesão Celular , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Laminina/metabolismo , Proteínas de Membrana/fisiologia , Neovascularização Fisiológica , Receptor Cross-Talk
7.
J Cell Sci ; 123(Pt 14): 2491-501, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20592186

RESUMO

Integrin receptors and their extracellular matrix ligands provide cues to cell proliferation, survival, differentiation and migration. Here, we show that alpha2beta1 integrin, when ligated to the basement membrane component laminin-1, triggers a proliferation arrest in primary endothelial cells. Indeed, in the presence of strong growth signals supplied by growth factors and fibronectin, alpha2beta1 engagement alters assembly of mature focal adhesions by alpha5beta1 and leads to impairment of downstream signaling and cell-cycle arrest in the G1 phase. Although the capacity of alpha5beta1 to signal for GTP loading of Rac is preserved, the joint engagement of alpha2beta1 interferes with membrane anchorage of Rac. Adapting the 'split-ubiquitin' sensor to screen for membrane-proximal alpha2 integrin partners, we identified the CD9 tetraspanin and further establish its requirement for destabilization of focal adhesions, control of Rac subcellular localization and growth arrest induced by alpha2beta1 integrin. Altogether, our data establish that alpha2beta1 integrin controls endothelial cell commitment towards quiescence by triggering a CD9-dependent dominant signaling.


Assuntos
Antígenos CD/metabolismo , Células Endoteliais/metabolismo , Integrina alfa2beta1/metabolismo , Laminina/farmacologia , Glicoproteínas de Membrana/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Antígenos CD/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibronectinas/farmacologia , Adesões Focais/genética , Adesões Focais/metabolismo , Humanos , Integrina alfa2beta1/agonistas , Integrina alfa5beta1/agonistas , Integrina alfa5beta1/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Tetraspanina 29
8.
FASEB J ; 25(9): 3092-105, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21676945

RESUMO

The mechanisms that regulate keratinocyte migration and proliferation in wound healing remain largely unraveled, notably regarding possible involvements of microRNAs (miRNAs). Here we disclose up-regulation of miR-483-3p in 2 distinct models of wound healing: scratch-injured cultures of human keratinocytes and wounded skin in mice. miR-483-3p accumulation peaks at the final stage of the wound closure process, consistent with a role in the arrest of "healing" progression. Using an in vitro wound-healing model, videomicroscopy, and 5-bromo-2'-uridine incorporation, we observed that overexpression of miR-483-3p inhibits keratinocyte migration and proliferation, whereas delivery of anti-miR-483-3p oligonucleotides sustains keratinocyte proliferation beyond the closure of the wound, compared with irrelevant anti-miR treatment. Expression profiling of keratinocytes transfected with miR-483-3p identified 39 transcripts that were both predicted targets of miR-483-3p and down-regulated after miR-483-3p overexpression. Luciferase reporter assays, Western blot analyses, and silencing by specific siRNAs finally established that kinase MK2, cell proliferation marker MKI67, and transcription factor YAP1 are direct targets of miR-483-3p that control keratinocyte proliferation. miR-483-3p-mediated down-regulation of MK2, MKI67, and YAP1 thus represents a novel mechanism controlling keratinocyte growth arrest at the final steps of reepithelialization.


Assuntos
Proliferação de Células , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Ferimentos e Lesões/metabolismo , Animais , Anticorpos , Células Epiteliais , Inativação Gênica , Humanos , Queratinócitos/citologia , Camundongos , MicroRNAs/genética , Oligonucleotídeos , Pele/metabolismo , Fatores de Tempo
9.
J Biol Chem ; 284(44): 30248-56, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19726672

RESUMO

Dominant-negative interference by glycine substitution mutations in the COL7A1 gene causes dominant dystrophic epidermolysis bullosa (DDEB), a skin fragility disorder with mechanically induced blistering. Although qualitative and quantitative alterations of the COL7A1 gene product, collagen VII, underlie DDEB, the lack of direct correlation between mutations and the clinical phenotype has rendered DDEB less amenable to therapeutic targeting. To delineate the molecular mechanisms of DDEB, we used recombinant expression of wild-type (WT) and mutant collagen VII, which contained a naturally occurring COL7A1 mutation, G1776R, G2006D, or G2015E, for characterization of the triple helical molecules. The mutants were co-expressed with WT in equal amounts and could form heterotrimeric hybrid triple helices, as demonstrated by affinity purification and mass spectrometry. The thermal stability of the mutant molecules was strongly decreased, as evident in their sensitivity to trypsin digestion. The helix-to-coil transition, T(m), of the mutant molecules was 31-34 degrees C, and of WT collagen VII 41 degrees C. Co-expression of WT with G1776R- or G2006D-collagen VII resulted in partial intracellular retention of the collagen, and mutant collagen VII had reduced ability to support cell adhesion. Intriguingly, controlled overexpression of WT collagen VII gradually improved the thermal stability of the collective of collagen VII molecules. Co-expression in a ratio of 90% WT:10% mutant increased the T(m) to 41 degrees C for G1776R-collagen VII and to 39 degrees C for G2006D- and G2015E-collagen VII. Therefore, increasing the expression of WT collagen VII in the skin of patients with DDEB can be considered a valid therapeutic approach.


Assuntos
Colágeno Tipo VII/genética , Proteínas Mutantes/fisiologia , Mutação de Sentido Incorreto , Adesão Celular , Linhagem Celular , Colágeno Tipo VII/química , Colágeno Tipo VII/fisiologia , Humanos , Proteínas Mutantes/química , Conformação Proteica , Estabilidade Proteica , Pele/química , Temperatura de Transição
10.
J Cell Biol ; 162(7): 1189-96, 2003 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-14517202

RESUMO

Integrin alpha6beta4 signaling proceeds through Src family kinase (SFK)-mediated phosphorylation of the cytoplasmic tail of beta4, recruitment of Shc, and activation of Ras and phosphoinositide-3 kinase. Upon cessation of signaling, alpha6beta4 mediates assembly of hemidesmosomes. Here, we report that part of alpha6beta4 is incorporated in lipid rafts. Metabolic labeling in combination with mutagenesis indicates that one or more cysteine in the membrane-proximal segment of beta4 tail is palmitoylated. Mutation of these cysteines suppresses incorporation of alpha6beta4 in lipid rafts, but does not affect alpha6beta4-mediated adhesion or assembly of hemidesmosomes. The fraction of alpha6beta4 localized to rafts associates with a palmitoylated SFK, whereas the remainder does not. Ligation of palmitoylation-defective alpha6beta4 does not activate SFK signaling to extracellular signal-regulated kinase and fails to promote keratinocyte proliferation in response to EGF. Thus, compartmentalization in lipid rafts is necessary to couple the alpha6beta4 integrin to a palmitoylated SFK and promote EGF-dependent mitogenesis.


Assuntos
Compartimento Celular/fisiologia , Integrina alfa6beta4/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Microdomínios da Membrana/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Dados de Sequência Molecular , Ácido Palmítico/metabolismo , Ratos , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo
11.
Cell Metab ; 29(1): 124-140.e10, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30293773

RESUMO

Dysregulation of extracellular matrix (ECM) deposition and cellular metabolism promotes tumor aggressiveness by sustaining the activity of key growth, invasion, and survival pathways. Yet mechanisms by which biophysical properties of ECM relate to metabolic processes and tumor progression remain undefined. In both cancer cells and carcinoma-associated fibroblasts (CAFs), we found that ECM stiffening mechanoactivates glycolysis and glutamine metabolism and thus coordinates non-essential amino acid flux within the tumor niche. Specifically, we demonstrate a metabolic crosstalk between CAF and cancer cells in which CAF-derived aspartate sustains cancer cell proliferation, while cancer cell-derived glutamate balances the redox state of CAFs to promote ECM remodeling. Collectively, our findings link mechanical stimuli to dysregulated tumor metabolism and thereby highlight a new metabolic network within tumors in which diverse fuel sources are used to promote growth and aggressiveness. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in cancer.


Assuntos
Ácido Aspártico/metabolismo , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Carcinoma/metabolismo , Ácido Glutâmico/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular , Matriz Extracelular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
12.
Cancer Res ; 78(18): 5229-5242, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30026329

RESUMO

In squamous cell carcinoma (SCC), tissue invasion by collectively invading cells requires physical forces applied by tumor cells on their surrounding extracellular matrix (ECM). Cancer-related ECM is composed of thick collagen bundles organized by carcinoma-associated fibroblasts (CAF) within the tumor stroma. Here, we show that SCC cell collective invasion is driven by the matrix-dependent mechano-sensitization of EGF signaling in cancer cells. Calcium (Ca2+) was a potent intracellular second messenger that drove actomyosin contractility. Tumor-derived matrix stiffness and EGFR signaling triggered increased intracellular Ca2+ through CaV1.1 expression in SCC cells. Blocking L-type calcium channel expression or activity using Ca2+ channel blockers verapamil and diltiazem reduced SCC cell collective invasion both in vitro and in vivo These results identify verapamil and diltiazem, two drugs long used in medical care, as novel therapeutic strategies to block the tumor-promoting activity of the tumor niche.Significance: This work demonstrates that calcium channels blockers verapamil and diltiazem inhibit mechano-sensitization of EGF-dependent cancer cell collective invasion, introducing potential clinical strategies against stromal-dependent collective invasion.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/18/5229/F1.large.jpg Cancer Res; 78(18); 5229-42. ©2018 AACR.


Assuntos
Sinalização do Cálcio , Carcinoma de Células Escamosas/patologia , Matriz Extracelular/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Actomiosina/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Colágeno/metabolismo , Diltiazem/farmacologia , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Invasividade Neoplásica , Esferoides Celulares , Verapamil/farmacologia
13.
Oncotarget ; 8(1): 1304-1320, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27901489

RESUMO

Acto-myosin contractility in carcinoma-associated fibroblasts leads to assembly of the tumor extracellular matrix. The pro-inflammatory cytokine LIF governs fibroblast activation in cancer by regulating the myosin light chain 2 activity. So far, however, how LIF mediates cytoskeleton contractility remains unknown. Using phenotypic screening assays based on knock-down of LIF-dependent genes in fibroblasts, we identified the glycoprotein ICAM-1 as a crucial regulator of stroma fibroblast proinvasive matrix remodeling. We demonstrate that the membrane-bound ICAM-1 isoform is necessary and sufficient to promote inflammation-dependent extracellular matrix contraction, which favors cancer cell invasion. Indeed, ICAM-1 mediates generation of acto-myosin contractility downstream of the Src kinases in stromal fibroblasts. Moreover, acto-myosin contractility regulates ICAM-1 expression by establishing a positive feedback signaling. Thus, targeting stromal ICAM-1 might constitute a possible therapeutic mean to counteract tumor cell invasion and dissemination.


Assuntos
Actomiosina/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Actomiosina/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Neoplasias de Cabeça e Pescoço/genética , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral
14.
Eur J Cell Biol ; 85(3-4): 243-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16546568

RESUMO

Integrins are transmembrane receptors which bind extracellular matrix proteins and enable not only cell adhesion and cytoskeleton organization but also transduction of critical signals into the cells to promote survival, proliferation, differentiation, or migration programs. Integrins participate in many aspects of vascular biology. The past few years have experienced a sustained interest in the implication of integrin receptors in tumor angiogenesis. We will focus our review on studies giving concrete evidence to a role of the beta1 class of integrins in angiogenesis, and we will provide an overview of the molecular mechanisms involved in their action.


Assuntos
Integrina beta1/fisiologia , Neovascularização Fisiológica , Animais , Diferenciação Celular/fisiologia , Humanos , Integrina beta1/metabolismo , Transdução de Sinais
15.
Respir Res ; 7: 28, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16483354

RESUMO

BACKGROUND: Laminin gamma2 (Lamc2), one of the polypeptides in laminin-332 (laminin-5), is prominent in the basement membrane of alveolar walls and airways of developing and adult lung. Laminins are important for lung morphogenesis and based on its localization, a function for laminin gamma2 in lung development has been hypothesized. Targeted deletion of the laminin gamma2 gene in mice results in skin blistering and neonatal death at 3-5 days after birth due to failure to thrive. METHODS: Examination of lung development in Lamc2-/- mice through 1-2 days postnatal was accomplished by morphometric analysis, lung bud culture, electron microscopy, immunohistochemical and immunofluorescence staining. RESULTS: Compared to littermate controls, Lamc2-/- lungs were similar in morphology during embryonic life. At post-natal day 1-2, distal saccules were mildly dilated by chord length measurements. Epithelial differentiation as evaluated by immunohistochemical staining for markers of ciliated cells, Clara cells, alveolar type I cells and alveolar type II cells did not reveal a difference between Lamc2-/- and littermate control lungs. Likewise, vascular development, smooth muscle cell differentiation, and elastic fiber formation looked similar, as did airway basement membrane ultrastructure. Branching morphogenesis by lung bud culture was similar in Lamc2-/- and littermate control lungs. Since laminin-332 is important for hemidesmosome formation, we examined the structure of tracheal hemidesmosomes by transmission electron microscopy. Compared to littermate controls, Lamc2-/- tracheal hemidesmosomes were less organized and lacked the increased electron density associated with the basement membrane abutting the hemidesmosome. CONCLUSION: These findings indicate that laminin gamma2 and laminin-332, despite their prominence in the lung, have a minimal role in lung development through the saccular stage.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Laminina/deficiência , Pulmão/crescimento & desenvolvimento , Animais , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Diferenciação Celular , Senescência Celular , Células Endoteliais , Células Epiteliais/patologia , Hemidesmossomos/metabolismo , Laminina/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Miócitos de Músculo Liso
16.
J Invest Dermatol ; 125(5): 883-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16297184

RESUMO

Laminin-5 (Lm5), the major adhesion ligand of basal epithelial cells, undergoes complex extracellular proteolytic processing that influences cell adhesion and migration. In tumor cell lines, the proteolytic truncation of the C-terminal G domain of the Lm alpha3 chain induces assembly of hemidesmosomes and downregulates cell migration. To define the biological functions of the alpha3 G domain processing in physiological conditions, we have expressed a series of mutant alpha3 complementary DNA in human primary alpha3-null keratinocytes immortalized by human papillomavirus E6E7 (HKalpha3 cells). Using monolayer and organotypic cell cultures we show that: (1) the hinge region between subdomains G3 and G4 carries the proteolytic cleavage sites; (2) nucleation of the hemidesmosomal proteins is independent of the proteolytic maturation of the alpha3 G domain, whereas formation of mature hemidesmosomes relies on proteolytic cleavage of alpha3; and (3) the proteolytic processing plays no role in cell migration, which suggests that nucleation of hemidesmosomal structures in culture does not reflect the migratory potential of the epithelial cells. Our results also demonstrate that HKalpha3 cells are a unique model system, which will be useful to dissect the functions and molecular interactions of Lm5.


Assuntos
Movimento Celular , Hemidesmossomos/metabolismo , Queratinócitos/fisiologia , Laminina/metabolismo , Processamento de Proteína Pós-Traducional , Células Cultivadas , Humanos , Queratinócitos/metabolismo , Laminina/química , Laminina/genética , Mutação , Técnicas de Cultura de Órgãos , Estrutura Terciária de Proteína
17.
J Invest Dermatol ; 124(3): 530-5, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15737193

RESUMO

Junctional epidermolysis bullosa (JEB) is a genodermatosis suitable for gene therapy because conventional treatments are ineffective. Here, we elucidate the genetic basis of mild JEB in a breed of dogs that display all the clinical traits observed in JEB patients. The condition is associated with reduced expression of laminin 5 caused by a homozygous insertion (4818+207ins6.5 kb) of repetitive satellite DNA within intron 35 of the gene (lama3) for the laminin alpha3 chain. The intronic mutation interferes with maturation of the alpha3 pre-messenger RNA resulting in the coexpression of a transcript with a 227 nucleotide insertion and a wild-type mRNA that encodes scant amounts of the alpha3 polypeptide. Our results show that the amino acid sequence and structure of the canine and human alpha3 chain are highly conserved and that the reduced expression of laminin 5 affects the adhesion and clonogenic potential of the JEB keratinocytes. These JEB dogs provide the opportunity to perform gene delivery in a naturally occurring genodermatosis and to evaluate host tolerance to recombinant laminin 5.


Assuntos
Modelos Animais de Doenças , Cães , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/fisiopatologia , Animais , Sequência de Bases , Biópsia , Vesícula/genética , Vesícula/patologia , Vesícula/fisiopatologia , Moléculas de Adesão Celular/genética , Epidermólise Bolhosa/patologia , Éxons/genética , Junções Intercelulares/patologia , Íntrons/genética , Queratinócitos/patologia , Linhagem , RNA Mensageiro/análise , Calinina
18.
Matrix Biol ; 24(5): 326-32, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15979864

RESUMO

A simplification of the laminin nomenclature is presented. Laminins are multidomain heterotrimers composed of alpha, beta and gamma chains. Previously, laminin trimers were numbered with Arabic numerals in the order discovered, that is laminins-1 to -5. We introduce a new identification system for a trimer using three Arabic numerals, based on the alpha, beta and gamma chain numbers. For example, the laminin with the chain composition alpha5beta1gamma1 is termed laminin-511, and not laminin-10. The current practice is also to mix two overlapping domain and module nomenclatures. Instead of the older Roman numeral nomenclature and mixed nomenclature, all modules are now called domains. Some domains are renamed or renumbered. Laminin epidermal growth factor-like (LE) domains are renumbered starting at the N-termini, to be consistent with general protein nomenclature. Domain IVb of alpha chains is named laminin 4a (L4a), domain IVa of alpha chains is named L4b, domain IV of gamma chains is named L4, and domain IV of beta chains is named laminin four (LF). The two coiled-coil domains I and II are now considered one laminin coiled-coil domain (LCC). The interruption in the coiled-coil of beta chains is named laminin beta-knob (Lbeta) domain. The chain origin of a domain is specified by the chain nomenclature, such as alpha1L4a. The abbreviation LM is suggested for laminin. Otherwise, the nomenclature remains unaltered.


Assuntos
Laminina/química , Laminina/classificação , Terminologia como Assunto , Animais , Humanos
19.
Bull Acad Natl Med ; 189(1): 107-19; discussion 119-21, 2005 Jan.
Artigo em Francês | MEDLINE | ID: mdl-16119884

RESUMO

The main human forms of epidermolysis bullosa (EB), namely EB simplex, junctional EB and dystrophic EB, have also been described in domestic animals (small and large ruminants, and horses) and companion animals (cats and dogs). A recent description of dystrophic epidermolysis bullosa (DEB) in Golden Retriever dogs provided details of the principal clinical, morphological and genetic features. The disease is characterized by blisters and erosions in the oral and esophageal epithelia, together with milia, nails dystrophy and growth retardation. The cutaneous lesions regress spontaneously in adult dogs, whereas the epithelial lesions persist, aggravate and spread, notably to the cornea. Classical microscopic studies (light and electron microscopy, indirect immunofluorescence) have revealed anchoring fibril abnormalities and very low-level and heterogenous expression of collagen type VII. The culprit mutation (G1906S) in the canine gene COL7A1 (87.8% nucleotide sequence identity to the human counterpart) involves the replacement of guanine 5716 by adenine, leading to glycine substitution by serine at amino acid position 1906. Transmission in kennels occurs in recessive mode (RDEB). These features recall certain human forms of DEB, and particularly those with a phenotype intermediate between gravis (the so-called Hallopeau-Siemens form) and mitis. No curative treatment of human EB is currently available, and efforts are therefore being made to develop a gene therapy protocol in animals. The first steps have already been successfully achieved, namely the development of a recombinant virus vector able to insert the wild-type gene into the keratinocyte genome, and grafting of artificial skin containing transfected canine keratinocytes in nude mice. The recombinant vectors are Moloney-type retroviruses (MMLV-PCMV), and the Zeocin resistance gene is used to select transduced cells. The artificial skin reconstructed in vitro is of the full-thickness type. Despite the large size of the transduced (9 kb), 95% of cells are transduced and produce large amounts of wild-type collagen. Two key issues remain, however: the possible immunogenicity of the transgene product and the persistence of transgene expression in individuals with a functional immune system. Golden Retriever dogs will provide a suitable animal model for these studies.


Assuntos
Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética , Animais , Modelos Animais de Doenças , Cães , Feminino , Glicina/genética , Masculino , Mutação , Serina/genética
20.
Nat Commun ; 6: 10204, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667266

RESUMO

Carcinoma-associated fibroblasts (CAF) mediate the onset of a proinvasive tumour microenvironment. The proinflammatory cytokine LIF reprograms fibroblasts into a proinvasive phenotype, which promotes extracellular matrix remodelling and collective invasion of cancer cells. Here we unveil that exposure to LIF initiates an epigenetic switch leading to the constitutive activation of JAK1/STAT3 signalling, which results in sustained proinvasive activity of CAF. Mechanistically, p300-histone acetyltransferase acetylates STAT3, which, in turn, upregulates and activates the DNMT3b DNA methyltransferase. DNMT3b methylates CpG sites of the SHP-1 phosphatase promoter, which abrogates SHP-1 expression, and results in constitutive phosphorylation of JAK1. Sustained JAK1/STAT3 signalling is maintained by DNA methyltransferase DNMT1. Consistently, in human lung and head and neck carcinomas, STAT3 acetylation and phosphorylation are inversely correlated with SHP-1 expression. Combined inhibition of DNMT activities and JAK signalling, in vitro and in vivo, results in long-term reversion of CAF-associated proinvasive activity and restoration of the wild-type fibroblast phenotype.


Assuntos
Carcinogênese/metabolismo , Epigenômica , Fibroblastos/fisiologia , Neoplasias/metabolismo , Animais , Anticorpos Neutralizantes , Carcinogênese/genética , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA