Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279292

RESUMO

Respiratory diseases in ruminants are a main cause of economic losses to farmers worldwide. Approximately 25% of ruminants experience at least one episode of respiratory disease during the first year of life. Mannheimia haemolytica is the main etiological bacterial agent in the ruminant respiratory disease complex. M. haemolytica can secrete several virulence factors, such as leukotoxin, lipopolysaccharide, and proteases, that can be targeted to treat infections. At present, little information has been reported on the secretion of M. haemolytica A2 proteases and their host protein targets. Here, we obtained evidence that M. haemolytica A2 proteases promote the degradation of hemoglobin, holo-lactoferrin, albumin, and fibrinogen. Additionally, we performed biochemical characterization for a specific 110 kDa Zn-dependent metalloprotease (110-Mh metalloprotease). This metalloprotease was purified through ion exchange chromatography and characterized using denaturing and chaotropic agents and through zymography assays. Furthermore, mass spectrometry identification and 3D modeling were performed. Then, antibodies against the 110 kDa-Mh metalloprotease were produced, which achieved great inhibition of proteolytic activity. Finally, the antibodies were used to perform immunohistochemical tests on postmortem lung samples from sheep with suggestive histology data of pneumonic mannheimiosis. Taken together, our results strongly suggest that the 110-Mh metalloprotease participates as a virulence mechanism that promotes damage to host tissues.


Assuntos
Mannheimia haemolytica , Pasteurelose Pneumônica , Doenças dos Ovinos , Bovinos , Ovinos , Animais , Pasteurelose Pneumônica/diagnóstico , Pasteurelose Pneumônica/microbiologia , Metaloproteases/metabolismo , Peptídeo Hidrolases/metabolismo , Ruminantes , Colagenases/metabolismo , Zinco/metabolismo , Doenças dos Ovinos/microbiologia
2.
J Proteomics ; 211: 103536, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31629057

RESUMO

In recent decades, the incidence of death and morbidity due to diabetes has increased worldwide, causing a high social and economic impact. Diabetes is a major cause of blindness, kidney failure, heart attack, stroke and lower limb amputation. However, the molecular mechanisms that make the heart and kidneys the main targets of diabetes are not completely understood. To better understand the complex biochemical mechanism of diabetic cardiomyopathy, we investigated the effects of hyperglycemia with concomitant digoxin and ouabain stimulation in H9c2 cells. Total extracted proteins were analyzed by label-free LC-MS/MS, quantified by Scaffold software and validated by parallel reaction monitoring (PRM) methodology. Here, we show that the eukaryotic initiation factors (Eifs) and elongation factors (Eefs) Eif3f, Eef2 and Eif4a1 are overexpressed following cardiotonic steroid (CTS) stimulation. Similarly, the expression of four 14-3-3 proteins that play a key role in cardiac ventricular compaction was altered after CTS stimulation. In total, the expression of nine protein groups was altered in response to the stimulation of H9c2 cells. Here, the biological consequences of these changes are discussed in depth. SIGNIFICANCE: Hyperglycemia is the main physiological condition that provokes tissue and vascular injuries in heart of diabetic patients. However, the changings at large scale in the expression of proteins of cardiomyocytes generated by this condition was not yet studied. Here we report for the first time the altered biosynthesis of nine groups of proteins of H9c2 cells activated by high glucose concentrations and by cardiotonic steroids (CTS). Furthermore, the increased biosynthesis of Eifs, Eefs and 14-3-3 protein groups by CTS, which play a crucial role in cardiomyopathies are original data reported in this work. These findings not only enhance our knowledge concerning to the effects of hyperglycemia and CTS on H9c2 cells but also indicate potential molecular targets to interfere in diabetes cardiomyopathy progression.


Assuntos
Glicosídeos Cardíacos , Cardiotônicos , Cromatografia Líquida , Glucose , Humanos , Miócitos Cardíacos , Proteômica , Espectrometria de Massas em Tandem
3.
J Proteomics ; 111: 16-29, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25009145

RESUMO

Dengue is an important and growing public health problem worldwide with an estimated 100million new clinical cases annually. Currently, no licensed drug or vaccine is available. During natural infection in humans, liver cells constitute one of the main targets of dengue virus (DENV) replication. However, a clear understanding of dengue pathogenesis remains elusive. In order to gain a better reading of the cross talk between virus and host cell proteins, we used a proteomics approach to analyze the host response to DENV infection in a hepatic cell line Huh-7. Differences in proteome expression were assayed 24h post-infection using label-free LC-MS. Quantitative analysis revealed 155 differentially expressed proteins, 64 of which were up-regulated and 91 down-regulated. These results reveal an important decrease in the expression of enzymes involved in the glycolytic pathway, citrate cycle, and pyruvate metabolism. This study provides large-scale quantitative information regarding protein expression in the early stages of infection that should be useful for better compression of the pathogenesis of dengue. BIOLOGICAL SIGNIFICANCE: Dengue infection involves alterations in the homeostasis of the host cell. Defining the interactions between virus and cell proteins should provide a better understanding of how viruses propagate and cause disease. Here, we present for the first time the proteomic analysis of hepatocytes (Huh-7 cells) infected with DENV-2 by label-free LC-MS.


Assuntos
Cromatografia Líquida , Dengue/metabolismo , Espectrometria de Massas , Proteoma , Apoptose , Linhagem Celular Tumoral , Vírus da Dengue , Regulação para Baixo , Citometria de Fluxo , Glicólise , Hepatócitos/virologia , Humanos , Fígado/virologia , Proteínas/metabolismo , Proteômica , Software , Regulação para Cima , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA