Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gels ; 9(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975706

RESUMO

Hydrogels are three-dimensional polymer networks with excellent flexibility. In recent years, ionic hydrogels have attracted extensive attention in the development of tactile sensors owing to their unique properties, such as ionic conductivity and mechanical properties. These features enable ionic hydrogel-based tactile sensors with exceptional performance in detecting human body movement and identifying external stimuli. Currently, there is a pressing demand for the development of self-powered tactile sensors that integrate ionic conductors and portable power sources into a single device for practical applications. In this paper, we introduce the basic properties of ionic hydrogels and highlight their application in self-powered sensors working in triboelectric, piezoionic, ionic diode, battery, and thermoelectric modes. We also summarize the current difficulty and prospect the future development of ionic hydrogel self-powered sensors.

2.
J Phys Chem Lett ; 14(14): 3512-3520, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37014293

RESUMO

Fiber-shaped solid-state zinc-ion battery (FZIB) is a promising candidate for wearable electronic devices, but challenges remain in terms of mechanical stability and low temperature tolerance. Herein, we design and fabricate a FZIB with an integrated device structure through effective incorporation of the active electrode materials with a carbon fiber rope (CFR) and a gel polymer electrolyte. The gel polymer electrolyte incorporated with ethylene glycol (EG) and graphene oxide (GO) endows the FZIB with a high Zn stripping/plating efficiency under extreme low temperature conditions. A high power density of 1.25 mW cm-1 and large energy density of 0.1752 mWh cm-1 are obtained. In addition, a high capacity retention of 91% after 2000 continuous bending cycles is achieved. Furthermore, the discharge capacity is fairly retained at more than 22% even at the low temperature of -20 °C. Toward practical applications, the FZIB integrated into textiles to power electronic products is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA