Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409912, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051899

RESUMO

Understanding the origin of surface reconstruction is crucial for developing highly efficient lattice oxygen oxidation mechanism (LOM) based spinel oxides. Traditionally, the reconstruction has been achieved through electrochemical procedures, such as cyclic voltammetry (CV), linear sweep voltammetry (LSV). In this work, we found that the surface reconstruction in LOM-based CoFe0.25Al1.75O4 catalyst was an irreversible oxygen redox chemical reaction. And a lower oxygen vacancy formation energy (EO-V) could benefit the combination of the activated lattice oxygen atoms with adsorbed water molecular. Motivated by this finding, a strategy of phase boundary construction from Co tetrahedral to octahedral was employed to decrease EO-V in CoFe0.25Al1.75O4. The results showed that as the Co octahedral occupancy ratio rose to 64%, a 3.5 nm-thick reconstructed layer formed on the catalyst surface with a 158 mV decrease in overpotential. Further experiments indicated that the coexistence of tetrahedral-octahedral (O-T) phase would result in lattice mismatch, promoting non-bonding oxygen states and lowering EO-V. Then more active lattice oxygen combined with H2O molecules to generate hydroxide ions (OH-), followed by soluble cation leaching, which enhanced the reconstruction process. This work provided new insights into the relationship between the intrinsic structure of pre-catalysts and surface reconstruction in LOM-based spinel electrocatalysts.

2.
Angew Chem Int Ed Engl ; 63(25): e202404730, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38618864

RESUMO

The anodic methanol oxidation reaction (MOR) plays a crucial role in coupling with the cathodic hydrogen evolution reaction (HER) and enables the sustainable production of the high-valued formate. Nickel-based hydroxide (Ni(OH)2) as MOR electrocatalyst has attracted enormous attention. However, the key factor determining the intrinsic catalytic activity remains unknown, which significantly hinders the further development of Ni(OH)2 electrocatalyst. Here, we found that the d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ electronic state within antibonding bands plays a decisive role in the whole MOR process. The onset potential depends on the deprotonation ability (Ni2+ to Ni3+), which was closely related to the band center of d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital. The closer of d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital to the Fermi level showed the stronger the deprotonation ability. Meanwhile, in the high potential region, the broadening of d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital would facilitate the electron transfer from methanol to catalysts (Ni3+ to Ni2+), further enhancing the catalytic properties. Our work for the first time clarifies the intrinsic relationship between d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ electronic state and the MOR activities, which adds a new layer of understanding to the methanol electrooxidation research scene.

3.
Angew Chem Int Ed Engl ; : e202411517, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039784

RESUMO

Ethylene glycol electro-oxidation reaction (EGOR) on nickel-based hydroxides (Ni(OH)2) represents a promising strategy for generating value-added chemicals, i.e. formate and glycolate, and coupling water-electrolytic hydrogen production. The high product selectivity was one of the most significant area of polyols electro-oxidation process. Yet, developing Ni(OH)2-based EGOR electrocatalyst with highly selective product remains a challenge due to the unclear cognition about the EGOR mechanism. Herein, Mn-doped Ni(OH)2 catalysts were utilized to investigate the EGOR mechanism. Experimental and calculation results reveal that the electronic states of eg* band play an important role in the catalytic performance and the product selectivity for EGOR. Broadening the eg* band could effectively enhance the adsorption capacity of glyoxal intermediates. On the other hand, this enhanced adsorption could lead to reduced side reactions associated with glycolate formation, simultaneously promoting the cleavage of C-C bonds. Consequently, the selectivity for formate was notably augmented by these enhancements. This work offers new insights into the regulation of catalyst electronic states for improving polyol electrocatalytic activity and product selectivity.

4.
Small ; 19(18): e2207496, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775919

RESUMO

It is extremely crucial to design and match high-quality cathode and anode for achieving high-performance asymmetric supercapacitors (ASCs). Herein, Co3 (PO4 )2 @NiCo-LDH/Ni foam (CP@NCOH/NF) cathode with hierarchical morphology and graphene hydrogel/Fe-Ni phosphide/Ni foam (GH/FNP/NF) anode with the robust and porous structure are elaborately designed and prepared, respectively. Owing to their unique and profitable structures, both CP@NCOH/NF and GH/FNP/NF electrodes yield the superior capacity (10760 and 2236 mC cm-2 at 2 mA cm-2 , respectively), good rate capability (63% retention at 200 mA cm-2 and 52% retention at 50 mA cm-2 , respectively), and excellent cycling stability (72% and 74% retention after 10 000 cycles, respectively). Benefiting from their matchable electrochemical performances, the configured solid-state CP@NCOH/NF//GH/FNP/NF ASC outputs both competitive energy density (80.2 Wh kg-1 /4.1 mWh cm-3 ) and power density (14563 W kg-1 /750 mW cm-3 ), companied by remarkable cyclability (71% retention after 10 000 cycles), manifesting its great promise for large-scale integrated energy-storage system.

5.
ChemSusChem ; 17(2): e202301195, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37743254

RESUMO

Electrochemical water splitting to generate hydrogen energy fills a gap in the intermittency issues for wind and sunlight power. Transition metal (TM) oxides have attracted significant interest in water oxidation due to their availability and excellent activity. Typically, the transitional metal oxyhydroxides species derived from these metal oxides are often acknowledged as the real catalytic species, due to the irreversible structural reconstruction. Hence, in order to innovatively design new catalyst, it is necessary to provide a comprehensive understanding for the origin of surface reconstruction. In this review, the most recent developments in the reconstruction of transition metal-based oxygen evolution reaction electrocatalysts were introduced, and various chemical driving forces behind the reconstruction mechanism were discussed. At the same time, specific strategies for modulating pre-catalysts to achieve controllable reconfiguration, such as metal substituting, increase of structural defect sites, were summarized. At last, the issues for the further understanding and optimization of transition metal oxides compositions based on structural reconstruction were provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA