Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(6): e31, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36715334

RESUMO

Targeted mutagenesis mediated by nucleotide base deaminase-T7 RNA polymerase fusions has recently emerged as a novel and broadly useful strategy to power genetic diversification in the context of in vivo directed evolution campaigns. Here, we expand the utility of this approach by introducing a highly active adenosine deaminase-T7 RNA polymerase fusion protein (eMutaT7A→G), resulting in higher mutation frequencies to enable more rapid directed evolution. We also assess the benefits and potential downsides of using this more active mutator. We go on to show in Escherichia coli that adenosine deaminase-bearing mutators (MutaT7A→G or eMutaT7A→G) can be employed in tandem with a cytidine deaminase-bearing mutator (MutaT7C→T) to introduce all possible transition mutations simultaneously. We illustrate the efficacy of this in vivo mutagenesis approach by exploring mutational routes to antibacterial drug resistance. This work sets the stage for general application of optimized MutaT7 tools able to induce all types of transition mutations during in vivo directed evolution campaigns across diverse organisms.


Assuntos
Mutagênese , Adenosina Desaminase/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Técnicas Genéticas
2.
ACS Synth Biol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190860

RESUMO

Deaminase-T7 RNA polymerase fusion (MutaT7) proteins are a growing class of synthetic biology tools used to diversify target genes during in vivo laboratory evolution. To date, MutaT7 chimeras comprise either a deoxyadenosine or deoxycytidine deaminase fused to a T7 RNA polymerase. Their expression drives targeted deoxyadenosine-to-deoxyguanosine or deoxycytidine-to-deoxythymidine mutagenesis, respectively. Here, we repurpose recently engineered substrate-promiscuous general deaminases (GDEs) to establish a substantially simplified system based on a single chimeric enzyme capable of targeting both deoxyadenosine and deoxycytidine. We assess on- and off-target mutagenesis, strand and context preference, and parity of deamination for four different MutaT7GDE constructs. We identify a single chimera that installs all possible transition mutations more efficiently than preexisting, more cumbersome MutaT7 tools. The optimized MutaT7GDE chimera reported herein is a next-generation hypermutator capable of mediating efficient and uniform target-gene diversification during in vivo directed evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA