Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Pain ; 10: 42, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24961298

RESUMO

BACKGROUND: Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood. Neuropathic pain is caused by a variety of phenomena including sustained excitability in sensory neurons that reduces the pain threshold so that pain is produced in the absence of appropriate stimuli. Chemokine signaling has been implicated in the pathogenesis of neuropathic pain in a variety of animal models. We therefore tested the hypothesis that chemokine signaling mediates DRG neuronal hyperexcitability in association with PDN. RESULTS: We demonstrated that intraperitoneal administration of the specific CXCR4 antagonist AMD3100 reversed PDN in two animal models of type II diabetes. Furthermore DRG sensory neurons acutely isolated from diabetic mice displayed enhanced SDF-1 induced calcium responses. Moreover, we demonstrated that CXCR4 receptors are expressed by a subset of DRG sensory neurons. Finally, we observed numerous CXCR4 expressing inflammatory cells infiltrating into the DRG of diabetic mice. CONCLUSIONS: These data suggest that CXCR4/SDF-1 signaling mediates enhanced calcium influx and excitability in DRG neurons responsible for PDN. Simultaneously, CXCR4/SDF-1 signaling may coordinate inflammation in diabetic DRG that could contribute to the development of pain in diabetes. Therefore, targeting CXCR4 chemokine receptors may represent a novel intervention for treating PDN.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Dor/etiologia , Dor/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/fisiologia , Animais , Benzilaminas , Células Cultivadas , Ciclamos , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Proteínas Ativadoras de GTPase , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Compostos Heterocíclicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dor/tratamento farmacológico , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores para Leptina/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Pain ; 165(5): 1154-1168, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147415

RESUMO

ABSTRACT: Painful diabetic neuropathy (PDN) is one of the most common and intractable complications of diabetes. Painful diabetic neuropathy is characterized by neuropathic pain accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability, axonal degeneration, and changes in cutaneous innervation. However, the complete molecular profile underlying the hyperexcitable cellular phenotype of DRG nociceptors in PDN has not been elucidated. This gap in our knowledge is a critical barrier to developing effective, mechanism-based, and disease-modifying therapeutic approaches that are urgently needed to relieve the symptoms of PDN. Using single-cell RNA sequencing of DRGs, we demonstrated an increased expression of the Mas-related G protein-coupled receptor d (Mrgprd) in a subpopulation of DRG neurons in the well-established high-fat diet (HFD) mouse model of PDN. Importantly, limiting Mrgprd signaling reversed mechanical allodynia in the HFD mouse model of PDN. Furthermore, in vivo calcium imaging allowed us to demonstrate that activation of Mrgprd-positive cutaneous afferents that persist in diabetic mice skin resulted in an increased intracellular calcium influx into DRG nociceptors that we assess in vivo as a readout of nociceptors hyperexcitability. Taken together, our data highlight a key role of Mrgprd-mediated DRG neuron excitability in the generation and maintenance of neuropathic pain in a mouse model of PDN. Hence, we propose Mrgprd as a promising and accessible target for developing effective therapeutics currently unavailable for treating neuropathic pain in PDN.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Hiperalgesia , Neuralgia , Receptores Acoplados a Proteínas G , Animais , Camundongos , Cálcio/metabolismo , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Hipersensibilidade/genética , Neuralgia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Hiperalgesia/genética , Hiperalgesia/fisiopatologia
3.
Neuron ; 109(9): 1426-1429, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33957072

RESUMO

Chronic pain is a disabling disease with limited treatment options. While animal models have revealed important aspects of pain neurobiology, therapeutic translation of this knowledge requires our understanding of these cells and networks of pain in humans. We propose a multi-institutional collaboration to rigorously and ethically address this challenge.


Assuntos
Dor Crônica , Colaboração Intersetorial , Humanos
4.
PLoS One ; 10(7): e0132815, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222784

RESUMO

Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Rastreamento de Células/métodos , Proteínas de Fluorescência Verde , Neurônios Motores/patologia , Células Receptoras Sensoriais/patologia , Ubiquitina Tiolesterase/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Células Receptoras Sensoriais/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Superóxido Dismutase-1
5.
Ann N Y Acad Sci ; 883(1): 281-293, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29086945

RESUMO

In order to better understand the pathogenesis of demyelination in P0 knockout (P0-/-) mice, we analyzed the myelin gene expression and the localization of myelin proteins in P0 null mouse sciatic nerve. We have demonstrated that the severe demyelinating neuropathy of P0-knockout mouse is associated with changes in the program of myelin gene expression. Some changes in myelin gene expression occur early, others occur during adulthood. We also provide evidence that the absence of P0 is associated with changes in the localization of specific paranodal proteins in the peripheral nerve. These data suggest that P0 plays an important role, either directly or indirectly, in the program of Schwann cell gene expression and in the specific distribution of peripheral myelin proteins. Furthermore, myelin gene dysregulation and improper localization of paranodal proteins may account, in part, for the pathogenesis of demyelination in P0-knockout mice, as well as in human demyelinating peripheral neuropathy associated with mutations in the P0 gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA