RESUMO
Kimberlites are volatile-rich, occasionally diamond-bearing magmas that have erupted explosively at Earth's surface in the geologic past1-3. These enigmatic magmas, originating from depths exceeding 150 km in Earth's mantle1, occur in stable cratons and in pulses broadly synchronous with supercontinent cyclicity4. Whether their mobilization is driven by mantle plumes5 or by mechanical weakening of cratonic lithosphere4,6 remains unclear. Here we show that most kimberlites spanning the past billion years erupted about 30 million years (Myr) after continental breakup, suggesting an association with rifting processes. Our dynamical and analytical models show that physically steep lithosphere-asthenosphere boundaries (LABs) formed during rifting generate convective instabilities in the asthenosphere that slowly migrate many hundreds to thousands of kilometres inboard of rift zones. These instabilities endure many tens of millions of years after continental breakup and destabilize the basal tens of kilometres of the cratonic lithosphere, or keel. Displaced keel is replaced by a hot, upwelling mixture of asthenosphere and recycled volatile-rich keel in the return flow, causing decompressional partial melting. Our calculations show that this process can generate small-volume, low-degree, volatile-rich melts, closely matching the characteristics expected of kimberlites1-3. Together, these results provide a quantitative and mechanistic link between kimberlite episodicity and supercontinent cycles through progressive disruption of cratonic keels.
RESUMO
Plate tectonics shapes Earth's surface, and is linked to motions within its deep interior1,2. Cold oceanic lithosphere sinks into the mantle, and hot mantle plumes rise from the deep Earth, leading to volcanism3,4. Volcanic eruptions over the past 320 million years have been linked to two large structures at the base of the mantle presently under Africa and the Pacific Ocean5,6. This has led to the hypothesis that these basal mantle structures have been stationary over geological time7,8, in contrast to observations and models suggesting that tectonic plates9,10, subduction zones11-14 and mantle plumes15,16 have been mobile, and that basal mantle structures are presently deforming17,18. Here we reconstruct mantle flow from one billion years ago to the present day to show that the history of volcanism is statistically as consistent with mobile basal mantle structures as with fixed ones. In our reconstructions, cold lithosphere sank deep into the African hemisphere between 740 and 500 million years ago, and from 400 million years ago the structure beneath Africa progressively assembled, pushed by peri-Gondwana slabs, to become a coherent structure as recently as 60 million years ago. Our mantle flow models suggest that basal mantle structures are mobile, and aggregate and disperse over time, similarly to continents at Earth's surface9. Our models also predict the presence of continental material in the mantle beneath Africa, consistent with geochemical data19,20.
RESUMO
Controls on Mesoproterozoic ocean redox heterogeneity, and links to nutrient cycling and oxygenation feedbacks, remain poorly resolved. Here, we report ocean redox and phosphorus cycling across two high-resolution sections from the ~1.4 Ga Xiamaling Formation, North China Craton. In the lower section, fluctuations in trade wind intensity regulated the spatial extent of a ferruginous oxygen minimum zone, promoting phosphorus drawdown and persistent oligotrophic conditions. In the upper section, high but variable continental chemical weathering rates led to periodic fluctuations between highly and weakly euxinic conditions, promoting phosphorus recycling and persistent eutrophication. Biogeochemical modeling demonstrates how changes in geographical location relative to global atmospheric circulation cells could have driven these temporal changes in regional ocean biogeochemistry. Our approach suggests that much of the ocean redox heterogeneity apparent in the Mesoproterozoic record can be explained by climate forcing at individual locations, rather than specific events or step-changes in global oceanic redox conditions.
RESUMO
Mapping the history of atmospheric O2 during the late Precambrian is vital for evaluating potential links to animal evolution. Ancient O2 levels are often inferred from geochemical analyses of marine sediments, leading to the assumption that the Earth experienced a stepwise increase in atmospheric O2 during the Neoproterozoic. However, the nature of this hypothesized oxygenation event remains unknown, with suggestions of a more dynamic O2 history in the oceans and major uncertainty over any direct connection between the marine realm and atmospheric O2. Here, we present a continuous quantitative reconstruction of atmospheric O2 over the past 1.5 billion years using an isotope mass balance approach that combines bulk geochemistry and tectonic recycling rate calculations. We predict that atmospheric O2 levels during the Neoproterozoic oscillated between ~1 and ~50% of the present atmospheric level. We conclude that there was no simple unidirectional rise in atmospheric O2 during the Neoproterozoic, and the first animals evolved against a backdrop of extreme O2 variability.