Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Exp Bot ; 74(21): 6749-6759, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599380

RESUMO

The presence or absence of awns-whether wheat heads are 'bearded' or 'smooth' - is the most visible phenotype distinguishing wheat cultivars. Previous studies suggest that awns may improve yields in heat or water-stressed environments, but the exact contribution of awns to yield differences remains unclear. Here we leverage historical phenotypic, genotypic, and climate data for wheat (Triticum aestivum) to estimate the yield effects of awns under different environmental conditions over a 12-year period in the southeastern USA. Lines were classified as awned or awnless based on sequence data, and observed heading dates were used to associate grain fill periods of each line in each environment with climatic data and grain yield. In most environments, awn suppression was associated with higher yields, but awns were associated with better performance in heat-stressed environments more common at southern locations. Wheat breeders in environments where awns are only beneficial in some years may consider selection for awned lines to reduce year-to-year yield variability, and with an eye towards future climates.


Assuntos
Grão Comestível , Triticum , Triticum/genética , Fenótipo , Resposta ao Choque Térmico , Sudeste dos Estados Unidos
2.
Plant Dis ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37883636

RESUMO

Fusarium head blight (FHB) has become a limiting factor in soft red winter wheat production in the southeast US. Recent epidemics have occurred in Georgia, however genetic information on the Fusarium species responsible for FHB is unknown. This study aimed to assess pathogen population structure and genetic diversity, trichothecene profiles, and representative pathogenicity of 196 Fusarium isolates collected from 44 wheat (n = 85) and 53 corn (n = 111) fields in Georgia. Phylogenetic analysis using the translation elongation factor 1-alpha (635 bp) and RNA polymerase second largest subunit (930 bp) sequence data resolved isolates into 185 haplotypes, representing 12 Fusarium species grouped under five species complexes. F. graminearum with 15-acetyl-deoxynivalenol (15ADON) chemotype (75.6%) and F. incarnatum (57.7%) predominated in wheat and corn, respectively, with a surprisingly higher frequency of NIV F. graminearum (21.8%). Using nine variable number of tandem repeat markers, 82 multilocus genotypes out of 86 F. graminearum isolates were identified and grouped into two genetic clusters, pop1fg (n = 29) and pop2fg (n = 32), as part of the North American populations (NA1 and NA2), but with no chemotype differentiation. F. graminearum populations in Georgia are mostly clonal and might have evolved through at least two introductions from the northeast US and Canada and local adaptation to maintain high genetic diversity. Pathogenicity of F. graminearum isolates from wheat and corn had high FHB severity (>60%) in wheat, depicting the risk they can pose towards future FHB outbreaks. Overall, this baseline study provided important information on Fusarium species diversity including F. graminearum associated with FHB in Georgia that will be useful to formulate integrated disease management incorporating improved host resistance and fungicide spray program.

3.
Theor Appl Genet ; 135(9): 3177-3194, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35871415

RESUMO

KEY MESSAGE: Marker-assisted selection is important for cultivar development. We propose a system where a training population genotyped for QTL and genome-wide markers may predict QTL haplotypes in early development germplasm. Breeders screen germplasm with molecular markers to identify and select individuals that have desirable haplotypes. The objective of this research was to investigate whether QTL haplotypes can be accurately predicted using SNPs derived by genotyping-by-sequencing (GBS). In the SunGrains program during 2020 (SG20) and 2021 (SG21), 1,536 and 2,352 lines submitted for GBS were genotyped with markers linked to the Fusarium head blight QTL: Qfhb.nc-1A, Qfhb.vt-1B, Fhb1, and Qfhb.nc-4A. In parallel, data were compiled from the 2011-2020 Southern Uniform Winter Wheat Scab Nursery (SUWWSN), which had been screened for the same QTL, sequenced via GBS, and phenotyped for: visual Fusarium severity rating (SEV), percent Fusarium damaged kernels (FDK), deoxynivalenol content (DON), plant height, and heading date. Three machine learning models were evaluated: random forest, k-nearest neighbors, and gradient boosting machine. Data were randomly partitioned into training-testing splits. The QTL haplotype and 100 most correlated GBS SNPs were used for training and tuning of each model. Trained machine learning models were used to predict QTL haplotypes in the testing partition of SG20, SG21, and the total SUWWSN. Mean disease ratings for the observed and predicted QTL haplotypes were compared in the SUWWSN. For all models trained using the SG20 and SG21, the observed Fhb1 haplotype estimated group means for SEV, FDK, DON, plant height, and heading date in the SUWWSN were not significantly different from any of the predicted Fhb1 calls. This indicated that machine learning may be utilized in breeding programs to accurately predict QTL haplotypes in earlier generations.


Assuntos
Fusarium , Mapeamento Cromossômico , Resistência à Doença/genética , Genótipo , Haplótipos , Humanos , Aprendizado de Máquina , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas
4.
BMC Genomics ; 22(1): 402, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058974

RESUMO

BACKGROUND: Genetic variation in growth over the course of the season is a major source of grain yield variation in wheat, and for this reason variants controlling heading date and plant height are among the best-characterized in wheat genetics. While the major variants for these traits have been cloned, the importance of these variants in contributing to genetic variation for plant growth over time is not fully understood. Here we develop a biparental population segregating for major variants for both plant height and flowering time to characterize the genetic architecture of the traits and identify additional novel QTL. RESULTS: We find that additive genetic variation for both traits is almost entirely associated with major and moderate-effect QTL, including four novel heading date QTL and four novel plant height QTL. FT2 and Vrn-A3 are proposed as candidate genes underlying QTL on chromosomes 3A and 7A, while Rht8 is mapped to chromosome 2D. These mapped QTL also underlie genetic variation in a longitudinal analysis of plant growth over time. The oligogenic architecture of these traits is further demonstrated by the superior trait prediction accuracy of QTL-based prediction models compared to polygenic genomic selection models. CONCLUSIONS: In a population constructed from two modern wheat cultivars adapted to the southeast U.S., almost all additive genetic variation in plant growth traits is associated with known major variants or novel moderate-effect QTL. Major transgressive segregation was observed in this population despite the similar plant height and heading date characters of the parental lines. This segregation is being driven primarily by a small number of mapped QTL, instead of by many small-effect, undetected QTL. As most breeding populations in the southeast U.S. segregate for known QTL for these traits, genetic variation in plant height and heading date in these populations likely emerges from similar combinations of major and moderate effect QTL. We can make more accurate and cost-effective prediction models by targeted genotyping of key SNPs.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Genômica , Fenótipo , Melhoramento Vegetal , Triticum/genética
5.
Mol Biol Rep ; 47(7): 5477-5486, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32632781

RESUMO

Farinograph and mixograph-related parameters are key elements in wheat end-products quality. Understanding the genetic control of these traits and the influence of environmental factors such as heat stress, and their interaction are critical for developing cultivars with improved for those traits. To identify QTL for six farinograph and three mixograph traits, two double haploid (DH) populations (Yecora Rojo × Ksu106 and Klasic × Ksu105) were used in experiments conducted at Riyadh and Al Qassim locations under heat stress. Single nucleotide polymorphism (SNP) markers were used to determine the number of QTLs controlling these parameters. The genetic analysis of farinograph and mixograph-related traits showed considerable variation with transgressive segregation regardless of heat stress conditions in both locations. A total of 108 additive QTLs were detected for the six farinograph and three mixograph traits in the Yecora Rojo × Ksu106 population in both locations under heat treatments. These QTLs were distributed over all 21 wheat chromosomes except 3A. Similarly, in Klassic × Ksu105 population, there were an additional 68 QTLs identified over the two locations and were allocated on all chromosomes except 1D, 2A, 6A, and 6D. In population (Yecora Rojo × Ksu106), the QTL on chromosome 7A (Excalibur_c62415_288) showed significant effects for farinograph and mixograph traits (FDDT, FDST, FBD, M × h8, and M × t) under normal and heat stress condition at both locations. Interestingly, several QTLs that are related to farinograph and mixograph traits, which showed stable expression under both locations, were detected on chromosome 7A in population (Klassic × Ksu105). Results from this study show the quantitative nature of the genetic control of the studied traits and constitute a step toward identifying major QTLs that can be sued molecular-marker assisted breeding to develop new improved quality wheat cultivars.


Assuntos
Resposta ao Choque Térmico/genética , Triticum/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genes de Plantas/genética , Ligação Genética/genética , Genótipo , Haploidia , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Resistência ao Cisalhamento , Viscosidade
6.
Plant Dis ; 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32954980

RESUMO

Fusarium head blight (FHB) is one of the most troublesome fungal diseases challenging US wheat (Triticum aestivum L.) production (Savary et al. 2019). Harmful mycotoxin contamination, primarily due to deoxynivalenol (DON) in the Fusarium-damaged kernels (FDK), can negatively impact human and livestock health (McMullen et al. 1997). Although Fusarium graminearum is the primary causal agent of FHB, several other species including F. poae could pose a risk by producing dangerous mycotoxins such as nivalenol, DON, HT-2, and T-2 (Stenglein 2009). Severe FHB epidemics on wheat have occurred in recent years along with increased corn acreage across the southeast US specifically in Georgia (Ghimire et al. 2020). Five symptomatic wheat heads displaying bleaching symptoms were randomly collected from 19 different fields across 13 counties of Georgia in late spring of 2018. Infected kernels were dipped in 6% sodium hypochlorite for 10 min and rinsed three times with sterilized water. Blot dried kernels were placed on potato dextrose agar (PDA) and incubated for 7 days at 25°C under 12-h photoperiod. Three isolates (GA18W-2.1.6, GA18W-6.1.4, and GA18W-10.2.3) from Terrell, Peach, and Sumter counties exhibited dense, whitish mycelium colony typical of F. poae (Leslie and Summerell 2006). When grown in carboxymethylcellulose broth, isolates produced globose to piriform microconidia (5.1 to 12.4 µm by 4.4 to 11.2 µm) that were aseptate or had a single septation. The morphological identification was further confirmed by DNA sequencing. Single hyphal tip isolates were grown on cellophane overlain on PDA for 10 days. Fungal DNA was extracted using a Qiagen DNeasy Plant Mini Kit. Genomic DNA was sequenced using TEF1 and TEF2 primer pairs that target the translation elongation factor 1-α (EF1-α) locus (O'Donnell et al. 1998). BLASTn query of the obtained sequences of GA18W-2.1.6 (accession no. MT856907) and GA18W-10.2.3 (accession no. MT856909) were identified as F. poae with a 99% sequence homology with GenBank reference accession MK629641, while GA18W-6.1.4 (accession no. MT856908) displayed 100% similarity with F. poae accession KJ947343. Koch's postulates were performed under greenhouse conditions. Three seeds of the FHB susceptible wheat cultivar 'SS8641' were planted in individual cone-tainers with three replications (two cone-tainers/replicate). Wheat plants were vernalized for six weeks and then moved back to the greenhouse. Each F. poae isolate was spray inoculated (50,000 spores/ml) at the flowering stage onto 18-24 wheat heads. A field isolate of F. graminearum was included as a positive control whereas heads mock-inoculated with water were used as a negative control. Inoculated wheat heads were incubated in black plastic bags for 48 hours. Disease severity and FDK were recorded three weeks post inoculation. Disease severities were 6.7% (GA18W-2.1.6), 8.3% (GA18W-10.2.3), and 15.2% (GA18W-6.1.4) compared to 90.0% in the positive control similar to Arrúa et al (2019). No symptoms were observed in the negative control. FDK was 18% (GA18W-2.1.6), 28% (GA18W-10.2.3) and 44% (GA18W-6.1.4). F. poae was re-isolated from the infected heads and found to be morphologically identical to the isolates used for inoculation. To our knowledge, this is the first report of F. poae associated with FHB of wheat in the state of Georgia, USA. F. poae isolates from Georgia might produce mycotoxins in addition to reducing grain yield which needs further study.

7.
Theor Appl Genet ; 132(4): 1247-1261, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30680419

RESUMO

KEY MESSAGE: The optimization of training populations and the use of diagnostic markers as fixed effects increase the predictive ability of genomic prediction models in a cooperative wheat breeding panel. Plant breeding programs often have access to a large amount of historical data that is highly unbalanced, particularly across years. This study examined approaches to utilize these data sets as training populations to integrate genomic selection into existing pipelines. We used cross-validation to evaluate predictive ability in an unbalanced data set of 467 winter wheat (Triticum aestivum L.) genotypes evaluated in the Gulf Atlantic Wheat Nursery from 2008 to 2016. We evaluated the impact of different training population sizes and training population selection methods (Random, Clustering, PEVmean and PEVmean1) on predictive ability. We also evaluated inclusion of markers associated with major genes as fixed effects in prediction models for heading date, plant height, and resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici). Increases in predictive ability as the size of the training population increased were more evident for Random and Clustering training population selection methods than for PEVmean and PEVmean1. The selection methods based on minimization of the prediction error variance (PEV) outperformed the Random and Clustering methods across all the population sizes. Major genes added as fixed effects always improved model predictive ability, with the greatest gains coming from combinations of multiple genes. Maximum predictabilities among all prediction methods were 0.64 for grain yield, 0.56 for test weight, 0.71 for heading date, 0.73 for plant height, and 0.60 for powdery mildew resistance. Our results demonstrate the utility of combining unbalanced phenotypic records with genome-wide SNP marker data for predicting the performance of untested genotypes.


Assuntos
Genômica , Estações do Ano , Seleção Genética , Triticum/genética , Alelos , Marcadores Genéticos , Genética Populacional , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
8.
Phytopathology ; 108(8): 972-979, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29561710

RESUMO

ND2710 is a hard red spring wheat line with a very high level of resistance to Fusarium head blight (FHB). It was selected from the progeny of a cross between ND2603 (an advanced breeding line derived from the Sumai 3/Wheaton cross) and Grandin (a spring wheat cultivar). The FHB resistance of ND2710 is presumably derived from Sumai 3 because the other parents (Grandin and Wheaton) are very susceptible to FHB. To identify and map the quantitative trait loci (QTL) for FHB resistance in ND2710, we developed a mapping population consisting of 233 recombinant inbred lines (RILs) from the cross between ND2710 and the spring wheat cultivar Bobwhite. These RILs along with their parents and checks were evaluated for reactions to FHB in three greenhouse experiments and one field experiment during 2013 to 2014. The population was also genotyped with the wheat 90K iSelect single-nucleotide polymorphism (SNP) assay, and a genetic linkage map was developed with 1,373 non-cosegregating SNP markers, which were distributed on all 21 wheat chromosomes spanning 914.98 centimorgans of genetic distance. Genetic analyses using both phenotypic and genotypic data identified one major QTL (Qfhb.ndwp-3B) on the short arm of chromosome 3B, and three minor QTL (Qfhb.ndwp-6B, Qfhb.ndwp-2A, and Qfhb.ndwp-6A) on 6B, 2A, and 6A, respectively. The major QTL on 3B was detected in all experiments and explained 5 to 20% of the phenotypic variation, while the three minor QTL on 6B, 2A, and 6A explained 5 to 12% phenotypic variation in at least two experiments, except for Qfhb.ndwp-2A, which was only detected in the field experiment. Qfhb.ndwp-3B and Qfhb.ndwp-6B were mapped to the genomic regions containing Fhb1 and Fhb2, respectively, confirming that they originated from Sumai 3. The additive effect of the major and minor QTL may contribute to the high level of FHB resistance in ND2710. The SNP markers closely linked to the FHB resistance QTL will be useful for marker-assisted selection of FHB resistance in wheat breeding programs.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fusarium , Doenças das Plantas/microbiologia , Triticum/genética , Cruzamentos Genéticos , Marcadores Genéticos , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/microbiologia
9.
Funct Integr Genomics ; 16(2): 171-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26860316

RESUMO

Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversity. The magnitude and essence of intergenomic interactions between nuclear and cytoplasmic genomes remain unknown due to the direction of many crosses. This study was conducted to address the role of nuclear-cytoplasmic interactions as a source of variation upon hybridization. Wheat (Triticum aestivum) alloplasmic lines carrying the cytoplasm of Aegilops mutica along with an integrated approach utilizing comparative quantitative trait locus (QTL) and epigenome analysis were used to dissect this interaction. The results indicate that cytoplasmic genomes can modify the magnitude of QTL controlling certain physiological traits such as dry matter weight. Furthermore, methylation profiling analysis detected eight polymorphic regions affected by the cytoplasm type. In general, these results indicate that novel nuclear-cytoplasmic interactions can potentially trigger an epigenetic modification cascade in nuclear genes which eventually change the genetic network controlling physiological traits. These modified genetic networks can serve as new sources of variation to accelerate the evolutionary process. Furthermore, this variation can synthetically be produced by breeders in their programs to develop epigenomic-segregating lines.


Assuntos
Núcleo Celular/metabolismo , Cromossomos de Plantas/química , Citoplasma/metabolismo , Epigênese Genética , Triticum/genética , Núcleo Celular/genética , Quimera , Mapeamento Cromossômico , Cromossomos de Plantas/metabolismo , Cruzamentos Genéticos , Citoplasma/genética , Metilação de DNA , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Locos de Características Quantitativas
10.
Plant Biotechnol J ; 14(8): 1716-26, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26915753

RESUMO

The nuclear-encoded species cytoplasm specific (scs) genes control nuclear-cytoplasmic compatibility in wheat (genus Triticum). Alloplasmic cells, which have nucleus and cytoplasm derived from different species, produce vigorous and vital organisms only when the correct version of scs is present in their nucleus. In this study, bulks of in vivo radiation hybrids segregating for the scs phenotype have been genotyped by sequencing with over 1.9 million markers. The high marker saturation obtained for a critical region of chromosome 1D allowed identification of 3318 reads that mapped in close proximity of the scs. A novel in silico approach was deployed to extend these short reads to sequences of up to 70 Kb in length and identify candidate open reading frames (ORFs). Markers were developed to anchor the short contigs containing ORFs to a radiation hybrid map of 650 individuals with resolution of 288 Kb. The region containing the scs locus was narrowed to a single Bacterial Artificial Chromosome (BAC) contig of Aegilops tauschii. Its sequencing and assembly by nano-mapping allowed rapid identification of a rhomboid gene as the only ORF existing within the refined scs locus. Resequencing of this gene from multiple germplasm sources identified a single nucleotide mutation, which gives rise to a functional amino acid change. Gene expression characterization revealed that an active copy of this rhomboid exists on all homoeologous chromosomes of wheat, and depending on the specific cytoplasm each copy is preferentially expressed. Therefore, a new methodology was applied to unique genetic stocks to rapidly identify a strong candidate gene for the control of nuclear-cytoplasmic compatibility in wheat.


Assuntos
Citoplasma/genética , Mapeamento de Híbridos Radioativos/métodos , Triticum/genética , Alelos , Núcleo Celular/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Mapeamento Físico do Cromossomo
11.
Theor Appl Genet ; 129(5): 897-908, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26796533

RESUMO

KEY MESSAGE: We identified a major QTL conferring race-nonspecific resistance and revealed its relationships with race-specific interactions in the wheat- Pyrenophora tritici-repentis pathosystem. Tan spot, caused by the fungus Pyrenophora tritici-repentis (Ptr), is a destructive disease of wheat worldwide. The disease system is known to include inverse gene-for-gene, race-specific interactions involving the recognition of fungal-produced necrotrophic effectors (NEs) by corresponding host sensitivity genes. However, quantitative trait loci (QTLs) conferring race-nonspecific resistance have also been identified. In this work, we identified a major race-nonspecific resistance QTL and characterized its genetic relationships with the NE-host gene interactions Ptr ToxA-Tsn1 and Ptr ToxC-Tsc1 in a recombinant inbred wheat population derived from the cross between 'Louise' and 'Penawawa.' Both parental lines were sensitive to Ptr ToxA, but Penawawa and Louise were highly resistant and susceptible, respectively, to conidial inoculations of all races. Resistance was predominantly governed by a major race-nonspecific QTL on chromosome arm 3BL for resistance to all races. Another significant QTL was detected at the distal end of chromosome arm 1AS for resistance to the Ptr ToxC-producing isolates, which corresponded to the known location of the Tsc1 locus. The effects of the 3B and 1A QTLs were largely additive, and the 3B resistance QTL was epistatic to the Ptr ToxA-Tsn1 interaction. Resistance to race 2 in F1 plants was completely dominant; however, race 3-inoculated F1 plants were only moderately resistant because they developed chlorosis presumably due to the Ptr ToxC-Tsc1 interaction. This work provides further understanding of genetic resistance in the wheat-tan spot system as well as important guidance for tan spot resistance breeding.


Assuntos
Ascomicetos , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética , Ligação Genética , Endogamia , Doenças das Plantas/microbiologia , Especificidade da Espécie
12.
BMC Genomics ; 16: 800, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26475137

RESUMO

BACKGROUND: The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more uniform marker resolution across the length of the chromosome compared to genetic mapping and does not require marker polymorphism per se, as it is based on presence (retention) vs. absence (deletion) marker assay. METHODS: In this study, a 178 line RH panel was genotyped with SSRs and DArT markers to develop the first high resolution RH maps of the entire D-genome of Ae. tauschii accession AL8/78. To confirm map order accuracy, the AL8/78-RH maps were compared with:1) a DArT consensus genetic map constructed using more than 100 bi-parental populations, 2) a RH map of the D-genome of reference hexaploid wheat 'Chinese Spring', and 3) two SNP-based genetic maps, one with anchored D-genome BAC contigs and another with anchored D-genome sequence scaffolds. Using marker sequences, the RH maps were also anchored with a BAC contig based physical map and draft sequence of the D-genome of Ae. tauschii. RESULTS: A total of 609 markers were mapped to 503 unique positions on the seven D-genome chromosomes, with a total map length of 14,706.7 cR. The average distance between any two marker loci was 29.2 cR which corresponds to 2.1 cM or 9.8 Mb. The average mapping resolution across the D-genome was estimated to be 0.34 Mb (Mb/cR) or 0.07 cM (cM/cR). The RH maps showed almost perfect agreement with several published maps with regard to chromosome assignments of markers. The mean rank correlations between the position of markers on AL8/78 maps and the four published maps, ranged from 0.75 to 0.92, suggesting a good agreement in marker order. With 609 mapped markers, a total of 2481 deletions for the whole D-genome were detected with an average deletion size of 42.0 Mb. A total of 520 markers were anchored to 216 Ae. tauschii sequence scaffolds, 116 of which were not anchored earlier to the D-genome. CONCLUSION: This study reports the development of first high resolution RH maps for the D-genome of Ae. tauschii accession AL8/78, which were then used for the anchoring of unassigned sequence scaffolds. This study demonstrates how RH mapping, which offered high and uniform resolution across the length of the chromosome, can facilitate the complete sequence assembly of the large and complex plant genomes.


Assuntos
Genoma de Planta , Poaceae/genética , Mapeamento de Híbridos Radioativos/métodos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo
13.
Theor Appl Genet ; 128(5): 893-912, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740563

RESUMO

KEY MESSAGE: A population developed from an exotic line with supernumerary spikelets was genetically dissected for eight quality traits, discovering new genes/alleles with potential use in wheat breeding programs. Identifying new QTLs and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, an RIL population developed from a cross of an elite wheat line (WCB414) and an exotic genotype with supernumerary spikelets (SS) was used to identify QTLs and new alleles for eight quality traits. Composite interval mapping for 1,000 kernels weight (TKW), kernel volume weight (KVW), grain protein content (GPC), percent of flour extraction (FE) and four mixograph-related traits identified a total of 69 QTLs including 19 stable QTLs. These QTLs were located on 18 different chromosomes (except 4D, 5D, and 6D). Thirteen of these QTLs explained more than 15% of phenotypic variation (PV) and were considered as major QTLs. In this study, we identified 11 QTLs for TKW (R (2) = 7.2-17.1 %), 10 for KVW (R (2) = 6.7-22.5%), 11 for GPC (R (2) = 4.7-16.9%), 6 for FE (R (2) = 4.8-19%) and 31 for mixograph-related traits (R (2) = 3.2-41.2%). In this population, several previously identified QTLs for SS, nine spike-related and ten agronomic traits were co-located with the quality QTLs, suggesting pleiotropic effects or close linkage among loci. The traits GPC and mixogram-related traits were positively correlated with SS. Indeed, several loci for quality traits were co-located with QTL for SS. The exotic parent contributed positive alleles that increased PV of the traits at 56% of loci demonstrating the suitability of germplasm with SS to improve quality traits in wheat.


Assuntos
Cruzamentos Genéticos , Locos de Características Quantitativas , Triticum/genética , Alelos , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Genótipo , Fenótipo
14.
Genome ; 57(5): 279-88, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25170648

RESUMO

Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different genomes and genomic regions. It is believed that in plant mitochondrial genome, rearrangements play a more important role than point mutations, but relatively few studies have directly addressed this phenomenon. To address this issue, we isolated and sequenced the ATP6-1 and ATP6-2 genes from 46 different euplasmic and alloplasmic wheat lines. Four different ATP6-1 orthologs were detected, two of them reported for the first time. Expression analysis revealed that all four orthologs are transcriptionally active. Results also indicated that both point mutation and genomic rearrangement are involved in the evolution of ATP6. However, rearrangement is the predominant force that triggers drastic variation. Data also indicated that speciation of domesticated wheat cultivars were simultaneous with the duplication of this gene. These results directly support the notion that rearrangement plays a significant role in driving plant mitochondrial genome evolution.


Assuntos
Genoma Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/genética , Triticum/genética , Cromossomos de Plantas , Evolução Molecular , Rearranjo Gênico , Filogenia , Mutação Puntual , Seleção Genética , Triticum/classificação
15.
J Sci Food Agric ; 94(2): 205-12, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23674491

RESUMO

BACKGROUND: High moisture before harvest can cause sprouting of the wheat kernel, which is termed pre-harvest sprouting (PHS). The aim of this study was to examine the variation in physicochemical properties of proteins in PHS-damaged (sprouted) hard red and white spring wheat genotypes. Specifically, protein content, enzyme activity and degradation of proteins were evaluated in sound and PHS-damaged wheat. RESULTS: Protein contents of sprouted wheat samples were lower than that of non-sprouted samples; however, their differences were not significantly (P > 0.05) correlated with sprouting score. Sodium dodecyl sulfate (SDS) buffer extractable proteins (EXP) and unextractable proteins (UNP) were analyzed by high-performance size exclusion chromatography. PHS damage elevated endoprotease activity and consequently increased the degradation of polymeric UNP and free asparagine concentration in wheat samples. Free asparagine is known to be a precursor for formation of carcinogenic acrylamide during high heat treatment, such as baking bread. Free asparagine content had significant correlations (P < 0.01) with sprouting score, endoprotease activity and protein degradation. CONCLUSIONS: Genotypes with higher endoprotease activity tend to exhibit a larger degree of degradation of UNP and higher free asparagine concentration in sprouted wheat samples.


Assuntos
Asparagina/genética , Genótipo , Germinação , Peptídeo Hidrolases/genética , Proteínas de Plantas/genética , Sementes/metabolismo , Triticum/genética , Acrilamida/química , Asparagina/química , Asparagina/metabolismo , Pão , Culinária , Dieta , Temperatura Alta , Humanos , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Água
16.
Genes (Basel) ; 14(9)2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37761952

RESUMO

The Hessian fly (HF) is an invasive insect that has caused millions of dollars in yield losses to southeastern US wheat farms. Genetic resistance is the most sustainable solution to control HF. However, emerging biotypes are quickly overcoming resistance genes in the southeast; therefore, identifying novel sources of resistance is critical. The resistant line "UGA 111729" and susceptible variety "AGS 2038" were crossbred to generate a population of 225 recombinant inbred lines. This population was phenotyped in the growth chamber (GC) during 2019 and 2021 and in field (F) trials in Georgia during the 2021-2022 growing seasons. Visual scoring was utilized in GC studies. The percentage of infested tillers and number of pupae/larvae per tiller, and infested tiller per sample were measured in studies from 2021 to 2022. Averaging across all traits, a major QTL on chromosome 3D explained 42.27% (GC) and 10.43% (F) phenotypic variance within 9.86 centimorgans (cM). SNP marker IWB65911 was associated with the quantitative trait locus (QTL) peak with logarithm of odds (LOD) values of 14.98 (F) and 62.22 (GC). IWB65911 colocalized with resistance gene H32. KASP marker validation verified that UGA 111729 and KS89WGRC06 express H32. IWB65911 may be used for marker-assisted selection.


Assuntos
Locos de Características Quantitativas , Triticum , Animais , Triticum/genética , Estações do Ano , Fazendas , Hibridização Genética
17.
Genetics ; 221(3)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35536185

RESUMO

Wheat (Triticum aestivum) yield is impacted by a diversity of developmental processes which interact with the environment during plant growth. This complex genetic architecture complicates identifying quantitative trait loci that can be used to improve yield. Trait data collected on individual processes or components of yield have simpler genetic bases and can be used to model how quantitative trait loci generate yield variation. The objectives of this experiment were to identify quantitative trait loci affecting spike yield, evaluate how their effects on spike yield proceed from effects on component phenotypes, and to understand how the genetic basis of spike yield variation changes between environments. A 358 F5:6 recombinant inbred line population developed from the cross of LA-95135 and SS-MPV-57 was evaluated in 2 replications at 5 locations over the 2018 and 2019 seasons. The parents were 2 soft red winter wheat cultivars differing in flowering, plant height, and yield component characters. Data on yield components and plant growth were used to assemble a structural equation model to characterize the relationships between quantitative trait loci, yield components, and overall spike yield. The effects of major quantitative trait loci on spike yield varied by environment, and their effects on total spike yield were proportionally smaller than their effects on component traits. This typically resulted from contrasting effects on component traits, where an increase in traits associated with kernel number was generally associated with a decrease in traits related to kernel size. In all, the complete set of identified quantitative trait loci was sufficient to explain most of the spike yield variation observed within each environment. Still, the relative importance of individual quantitative trait loci varied dramatically. Path analysis based on coefficients estimated through structural equation model demonstrated that these variations in effects resulted from both different effects of quantitative trait loci on phenotypes and environment-by-environment differences in the effects of phenotypes on one another, providing a conceptual model for yield genotype-by-environment interactions in wheat.


Assuntos
Locos de Características Quantitativas , Triticum , Genótipo , Fenótipo , Triticum/genética
18.
PLoS One ; 17(5): e0268546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35588401

RESUMO

In humid and temperate areas, Septoria nodorum blotch (SNB) is a major fungal disease of common wheat (Triticum aestivum L.) in which grain yield is reduced when the pathogen, Parastagonospora nodorum, infects leaves and glumes during grain filling. Foliar SNB susceptibility may be associated with sensitivity to P. nodorum necrotrophic effectors (NEs). Both foliar and glume susceptibility are quantitative, and the underlying genetics are not understood in detail. We genetically mapped resistance quantitative trait loci (QTL) to leaf and glume blotch using a double haploid (DH) population derived from the cross between the moderately susceptible cultivar AGS2033 and the resistant breeding line GA03185-12LE29. The population was evaluated for SNB resistance in the field in four successive years (2018-2021). We identified major heading date (HD) and plant height (PH) variants on chromosomes 2A and 2D, co-located with SNB escape mechanisms. Five QTL with small effects associated with adult plant resistance to SNB leaf and glume blotch were detected on 1A, 1B, and 6B linkage groups. These QTL explained a relatively small proportion of the total phenotypic variation, ranging from 5.6 to 11.8%. The small-effect QTL detected in this study did not overlap with QTL associated with morphological and developmental traits, and thus are sources of resistance to SNB.


Assuntos
Locos de Características Quantitativas , Triticum , Ascomicetos , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/microbiologia
19.
Front Genet ; 13: 1032601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685944

RESUMO

Wheat is the most important source of food, feed, and nutrition for humans and livestock around the world. The expanding population has increasing demands for various wheat products with different quality attributes requiring the development of wheat cultivars that fulfills specific demands of end-users including millers and bakers in the international market. Therefore, wheat breeding programs continually strive to meet these quality standards by screening their improved breeding lines every year. However, the direct measurement of various end-use quality traits such as milling and baking qualities requires a large quantity of grain, traits-specific expensive instruments, time, and an expert workforce which limits the screening process. With the advancement of sequencing technologies, the study of the entire plant genome is possible, and genetic mapping techniques such as quantitative trait locus mapping and genome-wide association studies have enabled researchers to identify loci/genes associated with various end-use quality traits in wheat. Modern breeding techniques such as marker-assisted selection and genomic selection allow the utilization of these genomic resources for the prediction of quality attributes with high accuracy and efficiency which speeds up crop improvement and cultivar development endeavors. In addition, the candidate gene approach through functional as well as comparative genomics has facilitated the translation of the genomic information from several crop species including wild relatives to wheat. This review discusses the various end-use quality traits of wheat, their genetic control mechanisms, the use of genetics and genomics approaches for their improvement, and future challenges and opportunities for wheat breeding.

20.
Plant Genome ; 15(3): e20222, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35633121

RESUMO

Host resistance is an effective and sustainable approach to manage the negative impact of Fusarium head blight (FHB) on wheat (Triticum aestivum L.) grain yield and quality. The objective of this study was to characterize the phenotypic responses and identify quantitative trait loci (QTL) conditioning different FHB resistance types using a panel of 236 elite soft red winter wheat (SRWW) lines in a genome-wide association study (GWAS). The panel was phenotyped for five FHB and three morphological traits under two field and two greenhouse environments in 2018-2019 and 2019-2020. We identified 160 significant marker-trait associations (MTAs) for FHB traits and 11 MTAs for plant height. Eleven QTL showed major effects and explained >10% phenotypic variation (PV) for FHB resistance. Among these major loci, three QTL were stable and five QTL exhibited a pleiotropic effect. The QTL QFhb-3BL, QFhb-5AS, QFhb-5BL, QFhb-7AS.1, QFhb-7AS.2, and QFhb-7BS are presumed to be novel. Pyramiding multiple resistance alleles from all the major-effect QTL resulted in a significant reduction in FHB incidence, severity, index, deoxynivalenol (DON), and Fusarium-damaged kernel (FDK) by 17, 43, 45, 55, and 25%, respectively. Further validation of these QTL could potentially facilitate successful introgression of these resistance loci in new cultivars for improved FHB resistance in breeding programs.


Assuntos
Fusarium , Mapeamento Cromossômico , Fusarium/fisiologia , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA