Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 12: 788851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185863

RESUMO

Lung transplantation remains as a primary treatment for end-stage lung diseases. Although remarkable improvement has been achieved due to the immunosuppressive protocols, long-term survival for lung transplant recipients (LTR) is still limited. In the last few decades, an increasing interest has grown in the study of dysregulation of immune mechanisms underlying allograft failure. In this regard, myeloid-derived suppressor cells (MDSCs) could play an important role in the promotion of graft tolerance due to their immune regulatory function. Here, we describe for the first time circulating subsets MDSCs from LTR at several time points and we evaluate the relationship of MDSCs with sort-term lung transplant outcomes. Although no effect of MDSCs subsets on short-term clinical events was observed, our results determine that Mo-MDSCs frequencies are increased after acute cellular rejection (ACR), suggesting a possible role for Mo-MDSCs in the development of chronic lung allograft dysfunction (CLAD). Therefore, whether MDSCs subsets play a role as biomarkers of chronic rejection remains unknown and requires further investigations. Also, the effects of the different immunosuppressive treatments on these subpopulations remain under research and further studies are needed to establish to what extend MDSCs immune modulation could be responsible for allograft acceptance.


Assuntos
Células Supressoras Mieloides , Humanos , Tolerância Imunológica , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Pulmão , Transplantados
2.
Biomedicines ; 9(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440072

RESUMO

Vaccine efficacy is based on clinical data. Currently, the assessment of immune response after SARS-CoV-2 vaccination is scarce. A total of 52 healthcare workers were immunized with the same lot of BNT162b2 vaccine. The immunological response against the vaccine was tested using a T-specific assay based on the expression of CD25 and CD134 after stimulation with anti-N, -S, and -M specific peptides of SARS-CoV-2. Moreover, IgG anti-S2 and -RBD antibodies were detected using ELISA. Furthermore, the cell subsets involved in the response to the vaccine were measured in peripheral blood by flow cytometry. Humoral-specific responses against the vaccine were detected in 94% and 100% after the first and second doses, respectively. Therefore, anti-S T-specific responses were observed in 57% and 90% of the subjects after the first and second doses of the vaccine, respectively. Thirty days after the second dose, significant increases in T helper 1 memory cells (p < 0.001), peripheral memory T follicular helper (pTFH) cells (p < 0.032), and switched memory (p = 0.005) were observed. This study describes the specific humoral and cellular immune responses after vaccination with the new mRNA-based BNT162b2 vaccine. A mobilization of TFH into the circulation occurs, reflecting a specific activation of the immune system.

3.
Front Immunol ; 11: 643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425928

RESUMO

Myeloid-derived suppressor cells (MDSC) represent a heterogeneous group of myeloid regulatory cells that were originally described in cancer. Several studies in animal models point to MDSC as important players in the induction of allograft tolerance due to their immune modulatory function. Most of the published studies have been performed in animal models, and the data addressing MDSCs in human organ transplantation are scarce. We evaluated the phenotype and function of different MDSCs subsets in 38 kidney transplant recipients (KTRs) at different time points. Our data indicate that monocytic MDSCs (Mo-MDSC) increase in KTR at 6 and 12 months posttransplantation. On the contrary, the percentages of polymorphonuclear MDSC (PMN-MDSC) and early-stage MDSC (e-MDSC) are not significantly increased. We evaluated the immunosuppressive activity of Mo-MDSC in KTR and confirmed their ability to increase regulatory T cells (Treg) in vitro. Interestingly, when we compared the ability of Mo-MDSC to suppress T cell proliferation, we observed that tacrolimus, but not rapamycin-treated KTR, was able to inhibit CD4+ T cell proliferation in vitro. This indicates that, although mTOR inhibitors are widely regarded as supportive of regulatory responses, rapamycin may impair Mo-MDSC function, and suggests that the choice of immunosuppressive therapy may determine the tolerogenic pathway and participating immune cells that promote organ transplant acceptance in KTR.


Assuntos
Imunossupressores/uso terapêutico , Transplante de Rim , Células Supressoras Mieloides/imunologia , Adulto , Idoso , Feminino , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/efeitos dos fármacos , Sirolimo/farmacologia , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/fisiologia , Tolerância ao Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA