Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 437(7062): 1125-7, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16237437

RESUMO

For several decades, most planetary researchers have regarded the impact crater populations on solid-surfaced planets and smaller bodies as predominantly reflecting the direct ('primary') impacts of asteroids and comets. Estimates of the relative and absolute ages of geological units on these objects have been based on this assumption. Here we present an analysis of the comparatively sparse crater population on Jupiter's icy moon Europa and suggest that this assumption is incorrect for small craters. We find that 'secondaries' (craters formed by material ejected from large primary impact craters) comprise about 95 per cent of the small craters (diameters less than 1 km) on Europa. We therefore conclude that large primary impacts into a solid surface (for example, ice or rock) produce far more secondaries than previously believed, implying that the small crater populations on the Moon, Mars and other large bodies must be dominated by secondaries. Moreover, our results indicate that there have been few small comets (less than 100 m diameter) passing through the jovian system in recent times, consistent with dynamical simulations.

2.
Science ; 333(6051): 1853-6, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21960625

RESUMO

MESSENGER observations from Mercury orbit reveal that a large contiguous expanse of smooth plains covers much of Mercury's high northern latitudes and occupies more than 6% of the planet's surface area. These plains are smooth, embay other landforms, are distinct in color, show several flow features, and partially or completely bury impact craters, the sizes of which indicate plains thicknesses of more than 1 kilometer and multiple phases of emplacement. These characteristics, as well as associated features, interpreted to have formed by thermal erosion, indicate emplacement in a flood-basalt style, consistent with x-ray spectrometric data indicating surface compositions intermediate between those of basalts and komatiites. The plains formed after the Caloris impact basin, confirming that volcanism was a globally extensive process in Mercury's post-heavy bombardment era.

3.
Science ; 329(5992): 668-71, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20647421

RESUMO

During its first two flybys of Mercury, the MESSENGER spacecraft acquired images confirming that pervasive volcanism occurred early in the planet's history. MESSENGER's third Mercury flyby revealed a 290-kilometer-diameter peak-ring impact basin, among the youngest basins yet seen, having an inner floor filled with spectrally distinct smooth plains. These plains are sparsely cratered, postdate the formation of the basin, apparently formed from material that once flowed across the surface, and are therefore interpreted to be volcanic in origin. An irregular depression surrounded by a halo of bright deposits northeast of the basin marks a candidate explosive volcanic vent larger than any previously identified on Mercury. Volcanism on the planet thus spanned a considerable duration, perhaps extending well into the second half of solar system history.

4.
Science ; 321(5885): 79-81, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599774

RESUMO

Morphologies and size-frequency distributions of impact craters on Mercury imaged during MESSENGER's first flyby elucidate the planet's geological history. Plains interior to the Caloris basin displaying color and albedo contrasts have comparable crater densities and therefore similar ages. Smooth plains exterior to Caloris exhibit a crater density approximately 40% less than on interior plains and are thus volcanic and not Caloris impact ejecta. The size distribution of smooth-plains craters matches that of lunar craters postdating the Late Heavy Bombardment, implying that the plains formed no earlier than 3.8 billion years ago (Ga). At diameters less than or equal to 8 to 10 kilometers, secondary impact craters on Mercury are more abundant than primaries; this transition diameter is much larger than that on the Moon or Mars. A low density of craters on the peak-ring basin Raditladi implies that it may be younger than 1 Ga.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA