Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Sci ; 181(2): 175-186, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33749773

RESUMO

Interpretation of untargeted metabolomics data from both in vivo and physiologically relevant in vitro model systems continues to be a significant challenge for toxicology research. Potency-based modeling of toxicological responses has served as a pillar of interpretive context and translation of testing data. In this study, we leverage the resolving power of concentration-response modeling through benchmark concentration (BMC) analysis to interpret untargeted metabolomics data from differentiated cultures of HepaRG cells exposed to a panel of reference compounds and integrate data in a potency-aligned framework with matched transcriptomic data. For this work, we characterized biological responses to classical human liver injury compounds and comparator compounds, known to not cause liver injury in humans, at 10 exposure concentrations in spent culture media by untargeted liquid chromatography-mass spectrometry analysis. The analyte features observed (with limited metabolites identified) were analyzed using BMC modeling to derive compound-induced points of departure. The results revealed liver injury compounds produced concentration-related increases in metabolomic response compared to those rarely associated with liver injury (ie, sucrose, potassium chloride). Moreover, the distributions of altered metabolomic features were largely comparable with those observed using high throughput transcriptomics, which were further extended to investigate the potential for in vitro observed biological responses to be observed in humans with exposures at therapeutic doses. These results demonstrate the utility of BMC modeling of untargeted metabolomics data as a sensitive and quantitative indicator of human liver injury potential.


Assuntos
Benchmarking , Transcriptoma , Humanos , Fígado , Espectrometria de Massas , Metabolômica
2.
Toxicol Sci ; 176(2): 343-354, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492150

RESUMO

A 5-day in vivo rat model was evaluated as an approach to estimate chemical exposures that may pose minimal risk by comparing benchmark dose (BMD) values for transcriptional changes in the liver and kidney to BMD values for toxicological endpoints from traditional toxicity studies. Eighteen chemicals, most having been tested by the National Toxicology Program in 2-year bioassays, were evaluated. Some of these chemicals are potent hepatotoxicants (eg, DE71, PFOA, and furan) in rodents, some exhibit toxicity but have minimal hepatic effects (eg, acrylamide and α,ß-thujone), and some exhibit little overt toxicity (eg, ginseng and milk thistle extract) based on traditional toxicological evaluations. Male Sprague Dawley rats were exposed once daily for 5 consecutive days by oral gavage to 8-10 dose levels for each chemical. Liver and kidney were collected 24 h after the final exposure and total RNA was assayed using high-throughput transcriptomics (HTT) with the rat S1500+ platform. HTT data were analyzed using BMD Express 2 to determine transcriptional gene set BMD values. BMDS was used to determine BMD values for histopathological effects from chronic or subchronic toxicity studies. For many of the chemicals, the lowest transcriptional BMDs from the 5-day assays were within a factor of 5 of the lowest histopathological BMDs from the toxicity studies. These data suggest that using HTT in a 5-day in vivo rat model provides reasonable estimates of BMD values for traditional apical endpoints. This approach may be useful to prioritize chemicals for further testing while providing actionable data in a timely and cost-effective manner.


Assuntos
Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testes de Toxicidade/normas , Transcriptoma , Animais , Ensaios de Triagem em Larga Escala , Masculino , Ratos , Ratos Sprague-Dawley
3.
Neurochem Res ; 32(9): 1573-85, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17592775

RESUMO

NGF is recognized for its role in neuronal differentiation and maintenance. Differentiation of PC12 cells by NGF involves p53, a transcription factor that controls growth arrest and apoptosis. We investigated NGF influence over p53 activity during NO-induced apoptosis by sodium nitroprusside in differentiated and mitotic PC12 cells. NGF-differentiation produced increased p53 levels, nuclear localization and sequence-specific DNA binding. Apoptosis in mitotic cells also produced these events but the accompanying activation of caspases 1-10 and mitochondrial depolarization were inhibited during NGF differentiation and could be reversed in p53-silenced cells. Transcriptional regulation of PUMA and survivin expression were not inhibited by NGF, although NO-induced mitochondrial depolarization was dependent upon de novo gene transcription and only occurred in mitotic cells. We conclude that NGF mediates prosurvival signaling by increasing factors such as Bcl-2 and p21(Waf1/Cip1) without altering p53 transcriptional activity to inhibit mitochondrial depolarization, caspase activation and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , DNA/metabolismo , Fator de Crescimento Neural/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Ativação Enzimática , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Células PC12 , Ratos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA