Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Annu Rev Biochem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594943

RESUMO

DNA replication and transcription occur in all living cells across all domains of life. Both essential processes occur simultaneously on the same template, leading to conflicts between the macromolecular machines that perform these functions. Numerous studies over the past few decades demonstrate that this is an inevitable problem in both prokaryotic and eukaryotic cells. We have learned that conflicts lead to replication fork reversal, breaks in the DNA, R-loop formation, topological stress, and mutagenesis, and they can ultimately impact evolution. Recent studies have also provided insight into the various mechanisms that mitigate, resolve, and allow tolerance of conflicts and how conflicts result in divergent pathological consequences across divergent species. In this review, we summarize current knowledge regarding the outcomes of encounters between replication and transcription machineries and explore how these clashes are dealt with across species.

2.
Cell ; 170(4): 787-799.e18, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802046

RESUMO

Replication-transcription collisions shape genomes, influence evolution, and promote genetic diseases. Although unclear why, head-on transcription (lagging strand genes) is especially disruptive to replication and promotes genomic instability. Here, we find that head-on collisions promote R-loop formation in Bacillus subtilis. We show that pervasive R-loop formation at head-on collision regions completely blocks replication, elevates mutagenesis, and inhibits gene expression. Accordingly, the activity of the R-loop processing enzyme RNase HIII at collision regions is crucial for stress survival in B. subtilis, as many stress response genes are head-on to replication. Remarkably, without RNase HIII, the ability of the intracellular pathogen Listeria monocytogenes to infect and replicate in hosts is weakened significantly, most likely because many virulence genes are head-on to replication. We conclude that the detrimental effects of head-on collisions stem primarily from excessive R-loop formation and that the resolution of these structures is critical for bacterial stress survival and pathogenesis.


Assuntos
Bacillus subtilis/fisiologia , Replicação do DNA , Listeria monocytogenes/fisiologia , Transcrição Gênica , Animais , Período de Replicação do DNA , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Camundongos , Estresse Fisiológico , Virulência
3.
Mol Cell ; 73(1): 157-165.e5, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449724

RESUMO

Efforts to battle antimicrobial resistance (AMR) are generally focused on developing novel antibiotics. However, history shows that resistance arises regardless of the nature or potency of new drugs. Here, we propose and provide evidence for an alternate strategy to resolve this problem: inhibiting evolution. We determined that the DNA translocase Mfd is an "evolvability factor" that promotes mutagenesis and is required for rapid resistance development to all antibiotics tested across highly divergent bacterial species. Importantly, hypermutator alleles that accelerate AMR development did not arise without Mfd, at least during evolution of trimethoprim resistance. We also show that Mfd's role in AMR development depends on its interactions with the RNA polymerase subunit RpoB and the nucleotide excision repair protein UvrA. Our findings suggest that AMR development can be inhibited through inactivation of evolvability factors (potentially with "anti-evolution" drugs)-in particular, Mfd-providing an unexplored route toward battling the AMR crisis.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Evolução Molecular , Fatores de Transcrição/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células CACO-2 , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Mutagênese/efeitos dos fármacos , Ligação Proteica , Especificidade da Espécie , Fatores de Tempo , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(27): e2300761120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364106

RESUMO

In bacteria, mutations lead to the evolution of antibiotic resistance, which is one of the main public health problems of the twenty-first century. Therefore, determining which cellular processes most frequently contribute to mutagenesis, especially in cells that have not been exposed to exogenous DNA damage, is critical. Here, we show that endogenous oxidative stress is a key driver of mutagenesis and the subsequent development of antibiotic resistance. This is the case for all classes of antibiotics and highly divergent species tested, including patient-derived strains. We show that the transcription-coupled repair pathway, which uses the nucleotide excision repair proteins (TC-NER), is responsible for endogenous oxidative stress-dependent mutagenesis and subsequent evolution. This suggests that a majority of mutations arise through transcription-associated processes rather than the replication fork. In addition to determining that the NER proteins play a critical role in mutagenesis and evolution, we also identify the DNA polymerases responsible for this process. Our data strongly suggest that cooperation between three different mutagenic DNA polymerases, likely at the last step of TC-NER, is responsible for mutagenesis and evolution. Overall, our work identifies a highly conserved pathway that drives mutagenesis due to endogenous oxidative stress, which has broad implications for all diseases of evolution, including antibiotic resistance development.


Assuntos
Reparo do DNA , Estresse Oxidativo , Humanos , Reparo do DNA/genética , Mutagênese , Estresse Oxidativo/genética , Dano ao DNA/genética , DNA Polimerase Dirigida por DNA/genética , Bactérias
5.
Nature ; 562(7726): 286-290, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283133

RESUMO

Membrane-bound O-acyltransferases (MBOATs) are a superfamily of integral transmembrane enzymes that are found in all kingdoms of life1. In bacteria, MBOATs modify protective cell-surface polymers. In vertebrates, some MBOAT enzymes-such as acyl-coenzyme A:cholesterol acyltransferase and diacylglycerol acyltransferase 1-are responsible for lipid biosynthesis or phospholipid remodelling2,3. Other MBOATs, including porcupine, hedgehog acyltransferase and ghrelin acyltransferase, catalyse essential lipid modifications of secreted proteins such as Wnt, hedgehog and ghrelin, respectively4-10. Although many MBOAT proteins are important drug targets, little is known about their molecular architecture and functional mechanisms. Here we present crystal structures of DltB, an MBOAT responsible for the D-alanylation of cell-wall teichoic acid in Gram-positive bacteria11-16, both alone and in complex with the D-alanyl donor protein DltC. DltB contains a ring of 11 peripheral transmembrane helices, which shield a highly conserved extracellular structural funnel extending into the middle of the lipid bilayer. The conserved catalytic histidine residue is located at the bottom of this funnel and is connected to the intracellular DltC through a narrow tunnel. Mutation of either the catalytic histidine or the DltC-binding site of DltB abolishes the D-alanylation of lipoteichoic acid and sensitizes the Gram-positive bacterium Bacillus subtilis to cell-wall stress, which suggests cross-membrane catalysis involving the tunnel. Structure-guided sequence comparison among DltB and vertebrate MBOATs reveals a conserved structural core and suggests that MBOATs from different organisms have similar catalytic mechanisms. Our structures provide a template for understanding structure-function relationships in MBOATs and for developing therapeutic MBOAT inhibitors.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Bicamadas Lipídicas/metabolismo , Aciltransferases/genética , Sequência de Aminoácidos , Animais , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Sequência Conservada , Cristalografia por Raios X , Histidina/genética , Histidina/metabolismo , Bicamadas Lipídicas/química , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Relação Estrutura-Atividade , Ácidos Teicoicos/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443179

RESUMO

RNA polymerase (RNAP) encounters various roadblocks during transcription. These obstacles can impede RNAP movement and influence transcription, ultimately necessitating the activity of RNAP-associated factors. One such factor is the bacterial protein Mfd, a highly conserved DNA translocase and evolvability factor that interacts with RNAP. Although Mfd is thought to function primarily in the repair of DNA lesions that stall RNAP, increasing evidence suggests that it may also be important for transcription regulation. However, this is yet to be fully characterized. To shed light on Mfd's in vivo functions, we identified the chromosomal regions where it associates. We analyzed Mfd's impact on RNAP association and transcription regulation genome-wide. We found that Mfd represses RNAP association at many chromosomal regions. We found that these regions show increased RNAP pausing, suggesting that they are hard to transcribe. Interestingly, we noticed that the majority of the regions where Mfd regulates transcription contain highly structured regulatory RNAs. The RNAs identified regulate a myriad of biological processes, ranging from metabolism to transfer RNA regulation to toxin-antitoxin (TA) functions. We found that cells lacking Mfd are highly sensitive to toxin overexpression. Finally, we found that Mfd promotes mutagenesis in at least one toxin gene, suggesting that its function in regulating transcription may promote evolution of certain TA systems and other regions containing strong RNA secondary structures. We conclude that Mfd is an RNAP cofactor that is important, and at times critical, for transcription regulation at hard-to-transcribe regions, especially those that express structured regulatory RNAs.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , DNA/metabolismo , Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/metabolismo , RNA/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/genética
7.
Annu Rev Microbiol ; 72: 71-88, 2018 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-29856930

RESUMO

Within the last decade, it has become clear that DNA replication and transcription are routinely in conflict with each other in growing cells. Much of the seminal work on this topic has been carried out in bacteria, specifically, Escherichia coli and Bacillus subtilis; therefore, studies of conflicts in these species deserve special attention. Collectively, the recent findings on conflicts have fundamentally changed the way we think about DNA replication in vivo. Furthermore, new insights on this topic have revealed that the conflicts between replication and transcription significantly influence many key parameters of cellular function, including genome organization, mutagenesis, and evolution of stress response and virulence genes. In this review, we discuss the consequences of replication-transcription conflicts on the life of bacteria and describe some key strategies cells use to resolve them. We put special emphasis on two critical aspects of these encounters: ( a) the consequences of conflicts on replisome stability and dynamics, and ( b) the resulting increase in spontaneous mutagenesis.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Replicação do DNA , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Transcrição Gênica
8.
PLoS Genet ; 13(1): e1006582, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28114307

RESUMO

The positioning of the DNA replication machinery (replisome) has been the subject of several studies. Two conflicting models for replisome localization have been proposed: In the Factory Model, sister replisomes remain spatially co-localized as the replicating DNA is translocated through a stationary replication factory. In the Track Model, sister replisomes translocate independently along a stationary DNA track and the replisomes are spatially separated for the majority of the cell cycle. Here, we used time-lapse imaging to observe and quantify the position of fluorescently labeled processivity-clamp (DnaN) complexes throughout the cell cycle in two highly-divergent bacterial model organisms: Bacillus subtilis and Escherichia coli. Because DnaN is a core component of the replication machinery, its localization patterns should be an appropriate proxy for replisome positioning in general. We present automated statistical analysis of DnaN positioning in large populations, which is essential due to the high degree of cell-to-cell variation. We find that both bacteria show remarkably similar DnaN positioning, where any potential separation of the two replication forks remains below the diffraction limit throughout the majority of the replication cycle. Additionally, the localization pattern of several other core replisome components is consistent with that of DnaN. These data altogether indicate that the two replication forks remain spatially co-localized and mostly function in close proximity throughout the replication cycle. The conservation of the observed localization patterns in these highly divergent species suggests that the subcellular positioning of the replisome is a functionally critical feature of DNA replication.


Assuntos
Ciclo Celular , Cromossomos Bacterianos/genética , DNA Polimerase Dirigida por DNA/genética , Complexos Multienzimáticos/genética , Bacillus subtilis/citologia , Bacillus subtilis/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Escherichia coli/citologia , Escherichia coli/genética , Complexos Multienzimáticos/química
9.
Nature ; 495(7442): 512-5, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23538833

RESUMO

Several mechanisms that increase the rate of mutagenesis across the entire genome have been identified; however, how the rate of evolution might be promoted in individual genes is unclear. Most genes in bacteria are encoded on the leading strand of replication. This presumably avoids the potentially detrimental head-on collisions that occur between the replication and transcription machineries when genes are encoded on the lagging strand. Here we identify the ubiquitous (core) genes in Bacillus subtilis and determine that 17% of them are on the lagging strand. We find a higher rate of point mutations in the core genes on the lagging strand compared with those on the leading strand, with this difference being primarily in the amino-acid-changing (nonsynonymous) mutations. We determine that, overall, the genes under strong negative selection against amino-acid-changing mutations tend to be on the leading strand, co-oriented with replication. In contrast, on the basis of the rate of convergent mutations, genes under positive selection for amino-acid-changing mutations are more commonly found on the lagging strand, indicating faster adaptive evolution in many genes in the head-on orientation. Increased gene length and gene expression amounts are positively correlated with the rate of accumulation of nonsynonymous mutations in the head-on genes, suggesting that the conflict between replication and transcription could be a driving force behind these mutations. Indeed, using reversion assays, we show that the difference in the rate of mutagenesis of genes in the two orientations is transcription dependent. Altogether, our findings indicate that head-on replication-transcription conflicts are more mutagenic than co-directional conflicts and that these encounters can significantly increase adaptive structural variation in the coded proteins. We propose that bacteria, and potentially other organisms, promote faster evolution of specific genes through orientation-dependent encounters between DNA replication and transcription.


Assuntos
Bacillus subtilis/genética , Replicação do DNA/genética , Evolução Molecular , Genes Bacterianos/genética , Mutagênese/genética , Transcrição Gênica/genética , Aminoácidos/genética , Regulação Bacteriana da Expressão Gênica/genética , Modelos Genéticos , Mutação Puntual/genética , Fatores de Tempo
10.
Curr Genet ; 64(5): 1029-1036, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29632994

RESUMO

DNA replication is essential to cellular proliferation. The cellular-scale organization of the replication machinery (replisome) and the replicating chromosome has remained controversial. Two competing models describe the replication process: In the track model, the replisomes translocate along the DNA like a train on a track. Alternately, in the factory model, the replisomes form a stationary complex through which the DNA is pulled. We summarize the evidence for each model and discuss a number of confounding aspects that complicate interpretation of the observations. We advocate a factory-like model for bacterial replication where the replisomes form a relatively stationary and weakly associated complex that can transiently separate.


Assuntos
Replicação do DNA , DNA Bacteriano/biossíntese , Proliferação de Células/genética , Cromossomos Bacterianos , Modelos Genéticos , Origem de Replicação
11.
PLoS Genet ; 11(6): e1005289, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26070154

RESUMO

In bacteria the concurrence of DNA replication and transcription leads to potentially deleterious encounters between the two machineries, which can occur in either the head-on (lagging strand genes) or co-directional (leading strand genes) orientations. These conflicts lead to replication fork stalling and can destabilize the genome. Both eukaryotic and prokaryotic cells possess resolution factors that reduce the severity of these encounters. Though Escherichia coli accessory helicases have been implicated in the mitigation of head-on conflicts, direct evidence of these proteins mitigating co-directional conflicts is lacking. Furthermore, the endogenous chromosomal regions where these helicases act, and the mechanism of recruitment, have not been identified. We show that the essential Bacillus subtilis accessory helicase PcrA aids replication progression through protein coding genes of both head-on and co-directional orientations, as well as rRNA and tRNA genes. ChIP-Seq experiments show that co-directional conflicts at highly transcribed rRNA, tRNA, and head-on protein coding genes are major targets of PcrA activity on the chromosome. Partial depletion of PcrA renders cells extremely sensitive to head-on conflicts, linking the essential function of PcrA to conflict resolution. Furthermore, ablating PcrA's ATPase/helicase activity simultaneously increases its association with conflict regions, while incapacitating its ability to mitigate conflicts, and leads to cell death. In contrast, disruption of PcrA's C-terminal RNA polymerase interaction domain does not impact its ability to mitigate conflicts between replication and transcription, its association with conflict regions, or cell survival. Altogether, this work establishes PcrA as an essential factor involved in mitigating transcription-replication conflicts and identifies chromosomal regions where it routinely acts. As both conflicts and accessory helicases are found in all domains of life, these results are broadly relevant.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , DNA Helicases/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Óperon , RNA Ribossômico/genética , RNA de Transferência/genética
12.
Proc Natl Acad Sci U S A ; 112(10): E1096-105, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713353

RESUMO

We previously reported that lagging-strand genes accumulate mutations faster than those encoded on the leading strand in Bacillus subtilis. Although we proposed that orientation-specific encounters between replication and transcription underlie this phenomenon, the mechanism leading to the increased mutagenesis of lagging-strand genes remained unknown. Here, we report that the transcription-dependent and orientation-specific differences in mutation rates of genes require the B. subtilis Y-family polymerase, PolY1 (yqjH). We find that without PolY1, association of the replicative helicase, DnaC, and the recombination protein, RecA, with lagging-strand genes increases in a transcription-dependent manner. These data suggest that PolY1 promotes efficient replisome progression through lagging-strand genes, thereby reducing potentially detrimental breaks and single-stranded DNA at these loci. Y-family polymerases can alleviate potential obstacles to replisome progression by facilitating DNA lesion bypass, extension of D-loops, or excision repair. We find that the nucleotide excision repair (NER) proteins UvrA, UvrB, and UvrC, but not RecA, are required for transcription-dependent asymmetry in mutation rates of genes in the two orientations. Furthermore, we find that the transcription-coupling repair factor Mfd functions in the same pathway as PolY1 and is also required for increased mutagenesis of lagging-strand genes. Experimental and SNP analyses of B. subtilis genomes show mutational footprints consistent with these findings. We propose that the interplay between replication and transcription increases lesion susceptibility of, specifically, lagging-strand genes, activating an Mfd-dependent error-prone NER mechanism. We propose that this process, at least partially, underlies the accelerated evolution of lagging-strand genes.


Assuntos
Bacillus subtilis/genética , Genes Bacterianos , Dano ao DNA , Replicação do DNA , Mutagênese , Transcrição Gênica
13.
Nature ; 470(7335): 554-7, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21350489

RESUMO

Head-on encounters between the replication and transcription machineries on the lagging DNA strand can lead to replication fork arrest and genomic instability. To avoid head-on encounters, most genes, especially essential and highly transcribed genes, are encoded on the leading strand such that transcription and replication are co-directional. Virtually all bacteria have the highly expressed ribosomal RNA genes co-directional with replication. In bacteria, co-directional encounters seem inevitable because the rate of replication is about 10-20-fold greater than the rate of transcription. However, these encounters are generally thought to be benign. Biochemical analyses indicate that head-on encounters are more deleterious than co-directional encounters and that in both situations, replication resumes without the need for any auxiliary restart proteins, at least in vitro. Here we show that in vivo, co-directional transcription can disrupt replication, leading to the involvement of replication restart proteins. We found that highly transcribed rRNA genes are hotspots for co-directional conflicts between replication and transcription in rapidly growing Bacillus subtilis cells. We observed a transcription-dependent increase in association of the replicative helicase and replication restart proteins where head-on and co-directional conflicts occur. Our results indicate that there are co-directional conflicts between replication and transcription in vivo. Furthermore, in contrast to the findings in vitro, the replication restart machinery is involved in vivo in resolving potentially deleterious encounters due to head-on and co-directional conflicts. These conflicts probably occur in many organisms and at many chromosomal locations and help to explain the presence of important auxiliary proteins involved in replication restart and in helping to clear a path along the DNA for the replisome.


Assuntos
Bacillus subtilis/genética , Replicação do DNA/fisiologia , Transcrição Gênica/fisiologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DnaB Helicases/metabolismo , Genes Bacterianos/genética , Genes de RNAr/genética , Complexos Multienzimáticos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
14.
J Bacteriol ; 197(14): 2374-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939832

RESUMO

UNLABELLED: Efficient duplication of genomes depends on reactivation of replication forks outside the origin. Replication restart can be facilitated by recombination proteins, especially if single- or double-strand breaks form in the DNA. Each type of DNA break is processed by a distinct pathway, though both depend on the RecA protein. One common obstacle that can stall forks, potentially leading to breaks in the DNA, is transcription. Though replication stalling by transcription is prevalent, the nature of DNA breaks and the prerequisites for replication restart in response to these encounters remain unknown. Here, we used an engineered site-specific replication-transcription conflict to identify and dissect the pathways required for the resolution and restart of replication forks stalled by transcription in Bacillus subtilis. We found that RecA, its loader proteins RecO and AddAB, and the Holliday junction resolvase RecU are required for efficient survival and replication restart after conflicts with transcription. Genetic analyses showed that RecO and AddAB act in parallel to facilitate RecA loading at the site of the conflict but that they can each partially compensate for the other's absence. Finally, we found that RecA and either RecO or AddAB are required for the replication restart and helicase loader protein, DnaD, to associate with the engineered conflict region. These results suggest that conflicts can lead to both single-strand gaps and double-strand breaks in the DNA and that RecA loading and Holliday junction resolution are required for replication restart at regions of replication-transcription conflicts. IMPORTANCE: Head-on conflicts between replication and transcription occur when a gene is expressed from the lagging strand. These encounters stall the replisome and potentially break the DNA. We investigated the necessary mechanisms for Bacillus subtilis cells to overcome a site-specific engineered conflict with transcription of a protein-coding gene. We found that the recombination proteins RecO and AddAB both load RecA onto the DNA in response to the head-on conflict. Additionally, RecA loading by one of the two pathways was required for both replication restart and efficient survival of the collision. Our findings suggest that both single-strand gaps and double-strand DNA breaks occur at head-on conflict regions and demonstrate a requirement for recombination to restart replication after collisions with transcription.


Assuntos
Bacillus subtilis/metabolismo , Replicação do DNA/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Recombinases Rec A/metabolismo , Transcrição Gênica/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Reparo do DNA , Resolvases de Junção Holliday/genética , Recombinases Rec A/genética
15.
mBio ; 15(1): e0273723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38095872

RESUMO

IMPORTANCE: Eukaryotic hosts have defense mechanisms that may disrupt molecular transactions along the pathogen's chromosome through excessive DNA damage. Given that DNA damage stalls RNA polymerase (RNAP) thereby increasing mutagenesis, investigating how host defense mechanisms impact the movement of the transcription machinery on the pathogen chromosome is crucial. Using a new methodology we developed, we elucidated the dynamics of RNAP movement and association with the chromosome in the pathogenic bacterium Salmonella enterica during infection. We found that dynamics of RNAP movement on the chromosome change significantly during infection genome-wide, including at regions that encode for key virulence genes. In particular, we found that there is pervasive RNAP backtracking on the bacterial chromosome during infections and that anti-backtracking factors are critical for pathogenesis. Altogether, our results suggest that, interestingly, the host environment can promote the development of antimicrobial resistance and hypervirulence as stalled RNAPs can accelerate evolution through increased mutagenesis.


Assuntos
RNA Polimerases Dirigidas por DNA , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Bactérias/genética , Bactérias/metabolismo , Virulência
16.
NAR Mol Med ; 1(1): ugae001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38911259

RESUMO

Antibiotic resistance rapidly develops against almost all available therapeutics. Therefore, searching for new antibiotics to overcome the problem of antibiotic resistance alone is insufficient. Given that antibiotic resistance can be driven by mutagenesis, an avenue for preventing it is the inhibition of mutagenic processes. We previously showed that the DNA translocase Mfd is mutagenic and accelerates antibiotic resistance development. Here, we present our discovery of a small molecule that inhibits Mfd-dependent mutagenesis, ARM-1 (anti-resistance molecule 1). We found ARM-1 using a high-throughput, small molecule, in vivo screen. Using biochemical assays, we characterized the mechanism by which ARM-1 inhibits Mfd. Critically, we found that ARM-1 reduces mutagenesis and significantly delays antibiotic resistance development across highly divergent bacterial pathogens. These results demonstrate that the mutagenic proteins accelerating evolution can be directly inhibited. Furthermore, our findings suggest that Mfd inhibition, alongside antibiotics, is a potentially effective approach for prevention of antibiotic resistance development during treatment of infections.

17.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37215019

RESUMO

Pathogenic bacteria and their eukaryotic hosts are in a constant arms race. Hosts have numerous defense mechanisms at their disposal that not only challenge the bacterial invaders, but have the potential to disrupt molecular transactions along the bacterial chromosome. However, it is unclear how the host impacts association of proteins with the bacterial chromosome at the molecular level during infection. This is partially due to the lack of a method that could detect these events in pathogens while they are within host cells. We developed and optimized a system capable of mapping and measuring levels of bacterial proteins associated with the chromosome while they are actively infecting the host (referred to as PIC-seq). Here, we focused on the dynamics of RNA polymerase (RNAP) movement and association with the chromosome in the pathogenic bacterium Salmonella enterica as a model system during infection. Using PIC-seq, we found that RNAP association patterns with the chromosome change during infection genome-wide, including at regions that encode for key virulence genes. Importantly, we found that infection of a host significantly increases RNAP backtracking on the bacterial chromosome. RNAP backtracking is the most common form of disruption to RNAP progress on the chromosome. Interestingly, we found that the resolution of backtracked RNAPs via the anti-backtracking factors GreA and GreB is critical for pathogenesis, revealing a new class of virulence genes. Altogether, our results strongly suggest that infection of a host significantly impacts transcription by disrupting RNAP movement on the chromosome within the bacterial pathogen. The increased backtracking events have important implications not only for efficient transcription, but also for mutation rates as stalled RNAPs increase the levels of mutagenesis.

18.
Nat Commun ; 14(1): 1762, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997519

RESUMO

An important step towards understanding the mechanistic basis of the central dogma is the quantitative characterization of the dynamics of nucleic-acid-bound molecular motors in the context of the living cell. To capture these dynamics, we develop lag-time analysis, a method for measuring in vivo dynamics. Using this approach, we provide quantitative locus-specific measurements of fork velocity, in units of kilobases per second, as well as replisome pause durations, some with the precision of seconds. The measured fork velocity is observed to be both locus and time dependent, even in wild-type cells. In this work, we quantitatively characterize known phenomena, detect brief, locus-specific pauses at ribosomal DNA loci in wild-type cells, and observe temporal fork velocity oscillations in three highly-divergent bacterial species.


Assuntos
Cromossomos , Replicação do DNA , Replicação do DNA/genética , DNA Ribossômico
19.
Nat Struct Mol Biol ; 30(3): 348-359, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864174

RESUMO

Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork.


Assuntos
Replicação do DNA , RNA , Humanos , DNA/química , Proteínas de Ligação a DNA/metabolismo , Cromossomos/metabolismo , Instabilidade Genômica
20.
Mol Microbiol ; 82(2): 434-46, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21895792

RESUMO

Proper coordination of DNA replication with cell growth and division is critical for production of viable progeny. In bacteria, coordination of DNA replication with cell growth is generally achieved by controlling activity of the replication initiator DnaA and its access to the chromosomal origin of replication, oriC. Here we describe a previously unknown mechanism for regulation of DnaA. YabA, a negative regulator of replication initiation in Bacillus subtilis, interacts with DnaA and DnaN, the sliding (processivity) clamp of DNA polymerase. We found that in vivo, YabA associated with the oriC region in a DnaA-dependent manner and limited the amount of DnaA at oriC. In vitro, purified YabA altered binding of DnaA to DNA by inhibiting cooperativity. Although previously undescribed, proteins that directly inhibit cooperativity may be a common mechanism for regulating replication initiation. Conditions that cause release of DnaN from the replisome, or overproduction of DnaN, caused decreased association of YabA and increased association of DnaA with oriC. This effect of DnaN, either directly or indirectly, is likely responsible, in part, for enabling initiation of a new round of replication following completion of a previous round.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Ligação Proteica , Origem de Replicação , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA