Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(6): 3791-3800, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35226464

RESUMO

Dissimilatory nitrate reduction to ammonium (DNRA), the nearly forgotten process in the terrestrial nitrogen (N) cycle, can conserve N by converting the mobile nitrate into non-mobile ammonium avoiding nitrate losses via denitrification, leaching, and runoff. However, global patterns and controlling factors of soil DNRA are still only rudimentarily known. By a meta-analysis of 231 observations from 85 published studies across terrestrial ecosystems, we find a global mean DNRA rate of 0.31 ± 0.05 mg N kg-1 day-1, being significantly greater in paddy soils (1.30 ± 0.59) than in forests (0.24 ± 0.03), grasslands (0.52 ± 0.15), and unfertilized croplands (0.18 ± 0.04). Soil DNRA was significantly enhanced at higher altitude and lower latitude. Soil DNRA was positively correlated with precipitation, temperature, pH, soil total carbon, and soil total N. Precipitation was the main stimulator for soil DNRA. Total carbon and pH were also important factors, but their effects were ecosystem-specific as total carbon stimulates DNRA in forest soils, whereas pH stimulates DNRA in unfertilized croplands and paddy soils. Higher temperatures inhibit soil DNRA via decreasing total carbon. Moreover, nitrous oxide (N2O) emissions were negatively related to soil DNRA. Thus, future changes in climate and land-use may interact with management practices that alter soil substrate availability and/or soil pH to enhance soil DNRA with positive effects on N conservation and lower N2O emissions.


Assuntos
Compostos de Amônio , Carbono , Desnitrificação , Ecossistema , Nitratos , Nitrogênio , Óxido Nitroso , Solo
2.
Ecotoxicol Environ Saf ; 198: 110685, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32387845

RESUMO

Microorganism technologies can provide a potential alternative to traditional methods of removing heavy metals to conserve agricultural soils. This study aimed to identify and characterize heavy metals-resistant bacteria (HM-RB) isolated from industry-affected soil and their desired impact as bioremediators of heavy metals-stressed spinach plants. Three of 135 isolates were selected based on a high level of resistance to heavy metals. Based on morphological and biochemical characteristics, the selected isolates were identified as Bacillus subtilis subsp. spizizenii DSM 15029 T DSM (MA3), Paenibacillus jamilae DSM 13815 T DSM (LA22), or Pseudomonas aeruginosa DSM 1117 DSM (SN36). Experiments were implemented to investigate the three isolated HM-RB ability on improving attributes of growth, physio-biochemistry, and components of the antioxidant defense system of spinach plant exposed to the stress of cadmium (Cd2+; 2 mM), lead (Pb2+; 2 mM) or 2 mM Cd2++2 mM Pb2+. Compared to control, Cd2+ or Pb2+ stress markedly lowered plant fresh and dry weights, leaf contents of chlorophylls and carotenoids, rates of transpiration (Tr), net photosynthesis (Pn) and stomatal conductance (gs), relative water content (RWC), and membrane stability index (MSI). In contrast, contents of α.tochopherol (α.TOC), ascorbic acid (AsA), glutathione (GSH), proline, soluble sugars, Cd2+, and Pb2+, as well as activities of enzymatic and non-enzymatic antioxidants were markedly elevated. The application of HM-RB promoted the tolerance to heavy metal stress in spinach plants by improving Tr, Pn, gs, RWC, and MSI, while activities of enzymatic and non-enzymatic antioxidants were suppressed. These results reflected positively in promoting plant growth under heavy metal stress. Therefore, the application of HM-RB as potential bioremediators may be a promising strategy for promoting plant growth and productivity under heavy metal stress.


Assuntos
Biodegradação Ambiental , Metais Pesados/análise , Poluentes do Solo/toxicidade , Spinacia oleracea/fisiologia , Agricultura , Antioxidantes , Ácido Ascórbico , Bacillus/fisiologia , Cádmio , Clorofila , Glutationa , Paenibacillus/fisiologia , Fotossíntese , Folhas de Planta/química , Solo , Poluentes do Solo/análise , Spinacia oleracea/microbiologia
3.
Front Plant Sci ; 13: 1019014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457524

RESUMO

Microorganism-related technologies are alternative and traditional methods of metal recovery or removal. We identified and described heavy metal-resistant bacteria isolated from polluted industrial soils collected from various sites at a depth of 0-200 mm. A total of 135 isolates were screened from polluted industrial soil. The three most abundant isolate strains resistant to heavy metals were selected: Paenibacillus jamilae DSM 13815T DSM (LA22), Bacillus subtilis ssp. spizizenii DSM 15029T DSM (MA3), and Pseudomonas aeruginosa A07_08_Pudu FLR (SN36). A test was conducted to evaluate the effect of (1) isolated heavy metal-resistant bacteria (soil application), (2) a foliar spray with silicon dioxide nanoparticles (Si-NPs), and (3) moringa leaf extract (MLE) on the production, antioxidant defense, and physio-biochemical characteristics of spinach grown on heavy metal-contaminated soil. Bacteria and MLE or Si-NPs have been applied in single or combined treatments. It was revealed that single or combined additions significantly increased plant height, shoot dry and fresh weight, leaf area, number of leaves in the plant, photosynthetic pigments content, total soluble sugars, free proline, membrane stability index, ascorbic acid, relative water content, α-tocopherol, glycine betaine, glutathione, and antioxidant enzyme activities (i.e., peroxidase, glutathione reductase, catalase, superoxide dismutase, and ascorbate peroxidase) compared with the control treatment. However, applying bacteria or foliar spray with MLE or Si-NPs significantly decreased the content of contaminants in plant leaves (e.g., Fe, Mn, Zn, Pb, Cd, Ni, and Cu), malondialdehyde, electrolyte leakage, superoxide radical ( O 2 · - ) , and hydrogen peroxide (H2O2). Integrative additions had a more significant effect than single applications. It was suggested in our study that the integrative addition of B. subtilis and MLE as a soil application and as a foliar spray, respectively, is a critical approach to increasing spinach plant performance and reducing its contaminant content under contaminated soil conditions.

4.
Plant Physiol Biochem ; 142: 292-302, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31351320

RESUMO

Plant extracts have recently been used as exogenous adjuvants to strengthen the endogenous plant defense systems when they grow under different environmental stresses, including salinity. The study aimed at determining the effects of seed soaking using licorice root extract (LRE) on photosynthesis and antioxidant defense systems, including transcript levels of enzyme-encoding genes in pea seedling grown under 150 mM NaCl-salinity. Salt stress reduced seedling growth, photosynthesis attributes, and K+ content, and increased oxidative stress (O2•‒ and H2O2, and MDA), Na+, and Cl-, along with an increase in antioxidative defense activities compared to control. However, LRE pretreatment enhanced seedling growth, photosynthetic attributes (chlorophylls, carotenoids, Fv/Fm, Pn, Tr, and gs), ascorbate and glutathione and their redox states, proline, soluble sugars, α-TOC, and enzyme activities compared to stressed control. LRE pretreatment also upregulated transcript levels of CAT-, SOD-, APX-, GR-, DHAR-, and PrxQ-encoding genes in salt-stressed seedlings, decreasing oxidative stress and Na+ and Cl- contents and increasing K+ content and K+/Na+ ratio.


Assuntos
Antioxidantes/metabolismo , Glycyrrhiza/química , Pisum sativum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Fotossíntese/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo
5.
Environ Sci Pollut Res Int ; 25(17): 16776-16787, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29611129

RESUMO

Two field trials were carried out in two successive agricultural seasons to study the possibility of using silicon (Si) and Moringa seed extract (MSE) for reducing heavy metal contamination resulting from phosphate fertilizers addition to potato tubers. A randomized complete block design experiment was performed using three replicates. Various sources of phosphate fertilizers as ordinary super phosphate and rock phosphate were added at rate of 100 kg P ha-1 prior sowing. Silicon was added as potassium silicate (20% SiO2) at rate of 6 L ha-1, and MSE was also added at rate of 150 L ha-1 in three equal doses with the 2nd, 4th, and 6th irrigations during the last 10 min of drip irrigation. Results indicated that the addition of phosphate fertilizers increased fresh tuber yield, dry weight yield, NPK uptake, catalase, peroxidase, superoxide dismutase, and glutathione reductase of potato either alone or combined with silicon and MSE. The accumulation rate of Cu, Cd, and Ni in potato was higher with the single addition of rock phosphate fertilizer compared with single addition of super phosphate fertilizer. The highest reduction (P < 0.05) in heavy metal accumulation in potato leaves and tubers as well as soil was found with MSE treatment plus super phosphate fertilizer. It is recommended to add MSE at a rate of 150 L ha-1 along with fertilizing the potato crop with ordinary super phosphate fertilizer.


Assuntos
Fertilizantes/análise , Metais Pesados/análise , Fosfatos/análise , Folhas de Planta/química , Sementes/química , Dióxido de Silício/química , Poluentes do Solo/análise , Solanum tuberosum/química , Agricultura , Metais Pesados/química , Moringa , Fosfatos/química , Tubérculos , Silício , Solo , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA