RESUMO
A cell's ability to survive and to evade cancer is contingent on its ability to retain genomic integrity, which can be seriously compromised when nucleic acid phosphodiester bonds are disrupted. DNA Ligase 1 (LIG1) plays a key role in genome maintenance by sealing single-stranded nicks that are produced during DNA replication and repair. Autosomal recessive mutations in a limited number of individuals have been previously described for this gene. Here we report a homozygous LIG1 mutation (p.A624T), affecting a universally conserved residue, in a patient presenting with leukopenia, neutropenia, lymphopenia, pan-hypogammaglobulinemia, and diminished in vitro response to mitogen stimulation. Patient fibroblasts expressed normal levels of LIG1 protein but exhibited impaired growth, poor viability, high baseline levels of gamma-H2AX foci, and an enhanced susceptibility to DNA-damaging agents. The mutation reduced LIG1 activity by lowering its affinity for magnesium 2.5-fold. Remarkably, it also increased LIG1 fidelity > 50-fold against 3' end 8-Oxoguanine mismatches, exhibiting a marked reduction in its ability to process such nicks. This is expected to yield increased ss- and dsDNA breaks. Molecular dynamic simulations, and Residue Interaction Network studies, predicted an allosteric effect for this mutation on the protein loops associated with the LIG1 high-fidelity magnesium, as well as on DNA binding within the adenylation domain. These dual alterations of suppressed activity and enhanced fidelity, arising from a single mutation, underscore the mechanistic picture of how a LIG1 defect can lead to severe immunological disease.
Assuntos
DNA Ligase Dependente de ATP , Homozigoto , Mutação , Imunodeficiência Combinada Severa , Feminino , Humanos , Masculino , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Fibroblastos , Simulação de Dinâmica Molecular , Mutação/genética , Imunodeficiência Combinada Severa/genética , LactenteRESUMO
Hematopoietic stem/progenitor cell (HSPC) and leukemic cell homing is an important biological phenomenon that takes place through essential interactions with adhesion molecules on an endothelial cell layer. The homing process of HSPCs begins with the tethering and rolling of the cells on the endothelial layer, which is achieved by the interaction between selectins on the endothelium to the ligands on HSPC/leukemic cells under shear stress of the blood flow. Although many studies have been based on in vitro conditions of the cells rolling over recombinant proteins, significant challenges remain when imaging HSPC/leukemic cells on the endothelium, a necessity when considering characterizing cell-to-cell interaction and rolling dynamics during cell migration. Here, we report a new methodology that enables imaging of stem-cell-intrinsic spatiotemporal details during its migration on an endothelium-like cell monolayer. We developed optimized protocols that preserve transiently appearing structures on HSPCs/leukemic cells during its rolling under shear stress for fluorescence and scanning electron microscopy characterization. Our new experimental platform is closer to in vivo conditions and will contribute to indepth understanding of stem-cell behavior during its migration and cell-to-cell interaction during the process of homing.
RESUMO
The polyhistidine tag (His-tag) is one of the most popular protein tags used in the life sciences. Traditionally, the detection of His-tagged proteins relies on immunoblotting with anti-His antibodies. This approach is laborious for certain applications, such as protein purification, where time and simplicity are critical. The His-tag can also be directly detected by metal ion-loaded nickel-nitrilotriacetic acid-based chelator heads conjugated to fluorophores, which is a convenient alternative method to immunoblotting. Typically, such chelator heads are conjugated to either green or red fluorophores, the detection of which requires specialized excitation sources and detection systems. Here, we demonstrate that post-run staining is ideal for His-tag detection by metal ion-loaded and fluorescently labeled chelator heads in PAGE and blot membranes. Additionally, by comparing the performances of different chelator heads, we show how differences in microscopic affinity constants translate to macroscopic differences in the detection limits in environments with limited diffusion, such as PAGE. On the basis of these results, we devise a simple approach, called UVHis-PAGE, that uses metal ion-loaded and fluorescently labeled chelator heads to detect His-tagged proteins in PAGE and blot membranes. Our method uses a UV transilluminator as an excitation source, and the results can be visually inspected by the naked eye.
Assuntos
Eletroforese em Gel de Gradiente Desnaturante , Corantes Fluorescentes/química , Histidina/análise , Proteínas Recombinantes de Fusão/análise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/análise , Raios Ultravioleta , Histidina/química , Humanos , Proteínas Recombinantes de Fusão/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genéticaRESUMO
Selectins are key to mediating interactions involved in cellular adhesion and migration, underlying processes such as immune responses, metastasis, and transplantation. Selectins are composed of a lectin domain, an epidermal growth factor (EGF)-like domain, multiple short consensus repeats (SCRs), a transmembrane domain, and a cytoplasmic tail. It is well-established that the lectin and EGF domains are required to mediate interactions with ligands; however, the contributions of the other domains in mediating these interactions remain obscure. Using various E-selectin constructs produced in a newly developed silkworm-based expression system and several assays performed under both static and physiological flow conditions, including flow cytometry, glycan array analysis, surface plasmon resonance, and cell-rolling assays, we show here that a reduction in the number of SCR domains is correlated with a decline in functional E-selectin binding to hematopoietic cell E- and/or L-selectin ligand (HCELL) and P-selectin glycoprotein ligand-1 (PSGL-1). Moreover, the binding was significantly improved through E-selectin dimerization and by a substitution (A28H) that mimics an extended conformation of the lectin and EGF domains. Analyses of the association and dissociation rates indicated that the SCR domains, conformational extension, and dimerization collectively contribute to the association rate of E-selectin-ligand binding, whereas just the lectin and EGF domains contribute to the dissociation rate. These findings provide the first evidence of the critical role of the association rate in functional E-selectin-ligand interactions, and they highlight that the SCR domains have an important role that goes beyond the structural extension of the lectin and EGF domains.
Assuntos
Selectina E/química , Selectina E/metabolismo , Animais , Bombyx , Linhagem Celular Tumoral , Selectina E/isolamento & purificação , Humanos , Proteínas Imobilizadas/metabolismo , Cinética , Ligantes , Camundongos , Polissacarídeos/metabolismo , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-AtividadeRESUMO
Recruitment of circulating cells toward target sites is primarily dependent on selectin/ligand adhesive interactions. Glycosyltransferases are involved in the creation of selectin ligands on proteins and lipids. α1,3-Fucosylation is imperative for the creation of selectin ligands, and a number of fucosyltransferases (FTs) can modify terminal lactosamines on cells to create these ligands. One FT, fucosyltransferase VI (FTVI), adds a fucose in an α1,3 configuration to N-acetylglucosamine to generate sialyl Lewis X (sLex) epitopes on proteins of live cells and enhances their ability to bind E-selectin. Although a number of recombinant human FTVIs have been purified, apart from limited commercial enzymes, they were not characterized for their activity on live cells. Here we focused on establishing a robust method for producing FTVI that is active on living cells (hematopoietic cells and mesenchymal stromal cells). To this end, we used two expression systems, Bombyx mori (silkworm) and Pichia pastoris (yeast), to produce significant amounts of N-terminally tagged FTVI and demonstrated that these enzymes have superior activity when compared to currently available commercial enzymes that are produced from various expression systems. Overall, we outline a scheme for obtaining large amounts of highly active FTVI that can be used for the application of FTVI in enhancing the engraftment of cells lacking the sLex epitopes.
Assuntos
Selectina E/metabolismo , Fucosiltransferases/metabolismo , Polissacarídeos/metabolismo , Células-Tronco/metabolismo , Animais , Bombyx/genética , Linhagem Celular , Linhagem Celular Tumoral , Fucosiltransferases/genética , Expressão Gênica , Humanos , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Effective and cell-type-specific delivery of CRISPR/Cas9 gene editing elements remains a challenging open problem. Here we report the development of biomimetic cancer cell coated zeolitic imidazolate frameworks (ZIFs) for targeted and cell-specific delivery of this genome editing machinery. Coating ZIF-8 that is encapsulating CRISPR/Cas9 (CC-ZIF) with a cancer cell membrane resulted in the uniformly covered C3-ZIF(cell membrane type). Incubation of C3-ZIFMCF with MCF-7, HeLa, HDFn, and aTC cell lines showed the highest uptake by MCF-7 cells and negligible uptake by the healthy cells (i.e., HDFn and aTC). As to genome editing, a 3-fold repression in the EGFP expression was observed when MCF-7 were transfected with C3-ZIFMCF compared to 1-fold repression in the EGFP expression when MCF-7 were transfected with C3-ZIFHELA. In vivo testing confirmed the selectivity of C3-ZIFMCF to accumulate in MCF-7 tumor cells. This supports the ability of this biomimetic approach to match the needs of cell-specific targeting, which is unquestionably the most critical step in the future translation of genome editing technologies.
Assuntos
Biomimética , Sistemas CRISPR-Cas , Estruturas Metalorgânicas/química , Animais , Células HeLa , Xenoenxertos , Humanos , Células MCF-7 , CamundongosRESUMO
The parallel plate flow chamber assay is widely utilized to study physiological cell-cell adhesive interactions under dynamic flow that mimics the bloodstream. In this technique, the cells are perfused under defined shear stresses over a monolayer of endothelial cells (expressing homing molecules, e.g., selectins) or a surface (expressing recombinant homing molecules). However, with the need to study multiple samples and multiple parameters per sample, using a traditional bright-field microscope-based flow assay allows only one sample at a time to be analyzed, resulting in high interexperiment variability, the need for normalization, waste of materials, and significant consumption of time. We developed a multiplexing approach using a three-color fluorescence staining method, which allowed for up to seven different combination signatures to be run at one time. Using this fluorescent multiplex cell rolling (FMCR) assay, each sample is labeled with a different signature of emission wavelengths and mixed with other samples just minutes before the flow run. Subsequently, real-time images are acquired in a single pass using a line-scanning spectral confocal microscope. To illustrate the glycan-dependent binding of E-selectin, a central molecule in cell migration, to its glycosylated ligands expressed on myeloid-leukemic cells in flow, the FMCR assay was used to analyze E-selectin-ligand interactions following the addition (fucosyltransferase-treatment) or removal (deglycosylation) of key glycans on the flowing cells. The FMCR assay allowed us to analyze the cell-adhesion events from these different treatment conditions simultaneously in a competitive manner and to calculate differences in rolling frequency, velocity, and tethering capability of cells under study.
Assuntos
Corantes Fluorescentes/química , Microscopia Confocal/métodos , Animais , Anticorpos/química , Anticorpos/imunologia , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Selectina E/imunologia , Selectina E/metabolismo , Humanos , Imunoensaio , Células-Tronco/citologia , Células-Tronco/metabolismo , Imagem com Lapso de TempoRESUMO
BACKGROUND: Identifying the precise location of cells and their migration dynamics is of utmost importance for achieving the therapeutic potential of cells after implantation into a host. Magnetic resonance imaging is a suitable, non-invasive technique for cell monitoring when used in combination with contrast agents. RESULTS: This work shows that nanowires with an iron core and an iron oxide shell are excellent materials for this application, due to their customizable magnetic properties and biocompatibility. The longitudinal and transverse magnetic relaxivities of the core-shell nanowires were evaluated at 1.5 T, revealing a high performance as T2 contrast agents. Different levels of oxidation and various surface coatings were tested at 7 T. Their effects on the T2 contrast were reflected in the tailored transverse relaxivities. Finally, the detection of nanowire-labeled breast cancer cells was demonstrated in T2-weighted images of cells implanted in both, in vitro in tissue-mimicking phantoms and in vivo in mouse brain. Labeling the cells with a nanowire concentration of 0.8 µg of Fe/mL allowed the detection of 25 cells/µL in vitro, diminishing the possibility of side effects. This performance enabled an efficient labelling for high-resolution cell detection after in vivo implantation (~ 10 nanowire-labeled cells) over a minimum of 40 days. CONCLUSIONS: Iron-iron oxide core-shell nanowires enabled the efficient and longitudinal cellular detection through magnetic resonance imaging acting as T2 contrast agents. Combined with the possibility of magnetic guidance as well as triggering of cellular responses, for instance by the recently discovered strong photothermal response, opens the door to new horizons in cell therapy and make iron-iron oxide core-shell nanowires a promising theranostic platform.
Assuntos
Rastreamento de Células/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Nanofios , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Linhagem Celular , Compostos Férricos , Ferro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Imagens de Fantasmas , Nanomedicina TeranósticaRESUMO
The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of Thermococcus kodakarensis DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.
Assuntos
Proteínas Arqueais/química , DNA Polimerase Dirigida por DNA/química , Simulação de Dinâmica Molecular , Thermococcus/enzimologia , Oceano ÍndicoRESUMO
CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled codelivery of intact Cas9 protein and sgRNA.
Assuntos
Sistemas CRISPR-Cas/fisiologia , Endossomos/metabolismo , Edição de Genes , Imidazóis/química , Nanopartículas/química , Zeolitas/química , Animais , Células CHO , Cricetulus , Tamanho da PartículaRESUMO
Knowledge of materials' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.
Assuntos
Técnicas Biossensoriais/métodos , Membranas Artificiais , Nanopartículas/química , Temperatura , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Medições LuminescentesRESUMO
Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow on- and off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling.
Assuntos
Selectina E/metabolismo , Receptores de Hialuronatos/metabolismo , Glicoproteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , Linhagem Celular Tumoral , Movimento Celular , Humanos , Imunoprecipitação , Ligação Proteica , Mapeamento de Interação de ProteínasRESUMO
Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Resistência a Herbicidas/genética , Fotorreceptores de Plantas/genética , Fitocromo B/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/antagonistas & inibidores , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Ritmo Circadiano , Análise Mutacional de DNA , Glicina/análogos & derivados , Glicina/toxicidade , Mutação , Fenótipo , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/fisiologia , Fitocromo B/metabolismo , Fitocromo B/fisiologia , GlifosatoRESUMO
Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.
Assuntos
Movimento Celular , Encefalomielite Autoimune Experimental/terapia , Células-Tronco Neurais/metabolismo , Polissacarídeos/metabolismo , Animais , Terapia Genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/transplante , Selectinas/metabolismoRESUMO
Tracking small extracellular vesicles (sEVs), such as exosomes, requires staining them with dyes that penetrate their lipid bilayer, a process that leaves excess dye that needs to be mopped up to achieve high specificity. Current methods to remove superfluous dye have limitations, among them that they are time-intensive, carry the risk of losing sample and can require specialized equipment and materials. Here we present a fast, easy-to-use, and cost-free protocol for cleaning excess dye from stained sEV samples by adding their parental cells to the mixture to absorb the extra dye much like sponges do. Since sEVs are considered a next-generation drug delivery system, we further show the success of our approach at removing excess chemotherapeutic drug, daunorubicin, from the sEV solution.
Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Daunorrubicina/economia , Corantes/química , Coloração e Rotulagem/métodos , Coloração e Rotulagem/economiaRESUMO
For almost two decades, clinicians have overlooked the diagnostic potential of CD34neg hematopoietic stem cells because of their limited homing capacity relative to CD34posHSCs when injected intravenously. This has contributed to the lack of appeal of using umbilical cord blood in HSC transplantation because its stem cell count is lower than bone marrow. The present study reveals that the homing and engraftment of CD34negHSCs can be improved by adding the Sialyl Lewis X molecule via α1,3-fucosylation. This unlocks the potential for using this more primitive stem cell to treat blood disorders because our findings show CD34negHSCs have the capacity to regenerate cells in the bone marrow of mice for several months. Furthermore, our RNA sequencing analysis revealed that CD34negHSCs have unique adhesion pathways, downregulated in CD34posHSCs, that facilitate interaction with the bone marrow niche. Our findings suggest that CD34neg cells will best thrive when the HSC resides in its microenvironment.
RESUMO
Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34(+) cells) display greater E-selectin binding than those obtained from mouse (lin(-)/Sca-1(+)/c-kit(+) [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34(+) and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved by Western blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ~ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand-1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ~ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL." E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL's contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures.
Assuntos
Antígenos CD34/metabolismo , Selectina E/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Leucossialina/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genéticaRESUMO
Exosomes are tiny vesicles released by cells that carry communications to local and distant locations. Emerging research has revealed the role played by integrins found on the surface of exosomes in delivering information once they reach their destination. But until now, little has been known on the initial upstream steps of the migration process. Using biochemical and imaging approaches, we show here that exosomes isolated from both leukemic and healthy hematopoietic stem/progenitor cells can navigate their way from the cell of origin due to the presence of sialyl Lewis X modifications surface glycoproteins. This, in turn, allows binding to E-selectin at distant sites so the exosomes can deliver their messages. We show that when leukemic exosomes were injected into NSG mice, they traveled to the spleen and spine, sites typical of leukemic cell engraftment. This process, however, was inhibited in mice pre-treated with blocking E-selectin antibodies. Significantly, our proteomic analysis found that among the proteins contained within exosomes are signaling proteins, suggesting that exosomes are trying to deliver active cues to recipient cells that potentially alter their physiology. Intriguingly, the work outlined here also suggests that protein cargo can dynamically change upon exosome binding to receptors such as E-selectin, which thereby could alter the impact it has to regulate the physiology of the recipient cells. Furthermore, as an example of how miRNAs contained in exosomes can influence RNA expression in recipient cells, our analysis showed that miRNAs found in KG1a-derived exosomes target tumor suppressing proteins such as PTEN.
RESUMO
In contrast to the short-term (ST) CD34+ stem cells, studies have suggested that long-term (LT) hematopoietic stem cells (HSCs) found in the CD34- stem cell pool have trouble migrating and engrafting when introduced through IV. To understand why these deficiencies exist, we set out to fully elucidate the adhesion mechanisms used by ST and LT-HSCs to migrate to the bone marrow(BM). Specifically focusing on murine ST-HSCs (Flk2-CD34+) and LT-HSCs (Flk2-CD34-), we observed a distinctive expression pattern of BM homing effectors necessary for the first step, namely sialyl Lewis-X (sLex) (ligand for E-selectin), and the second step, namely CXCR4 chemokine receptor (receptor for SDF-1). sLex expression was higher on Flk2-CD34+ ST-HSCs (>60%) compared with Flk2-CD34- LT-HSCs (<10%), which correlated to binding to E-selectin. Higher concentrations of CXCR4 were observed on Flk2-CD34+ ST-HSCs compared with Flk2-CD34- LT-HSCs. Interestingly, the expression of CD26, a peptidase known to deactivate chemokines (ie, SDF-1), was higher on Flk2-CD34- LT-HSCs. Given that both E-selectin-binding and CXCR4-mediated migration are compromised in Flk2-CD34- LT-HSCs, we aimed to enhance their ability to migrate using recombinant human fucosyltransferase 6 (rhFTVI) and the CD26 inhibitor, Dip A (diprotin A). To this end, we observed that although LT-HSCs expressed low concentrations of sLex, they were able to engraft when transplanted into recipient mice. Moreover, although both CD26 inhibition and fucosylation enhanced migration of both HSC populations in vitro, only pretreatment of LT-HSCs with Dip A enhanced engraftment in vivo after transplantation into recipient mice. Remarkably, fucosylation of Flk2-CD34+ ST-HSCs consistently led to their ability to transplant secondary recipients. These data suggest that using fucosylation and Dip A to overcome the molecular disparity in adhesion mechanisms among ST-HSCs and LT-HSCs differentially influences their abilities to migrate and engraft in vivo and promotes the ability of ST-HSCs to engraft secondary recipient mice, the gold standard for testing functionality of LT-HSCs.
Assuntos
Dipeptidil Peptidase 4 , Selectina E , Animais , Antígenos CD34/metabolismo , Medula Óssea/metabolismo , Dipeptidil Peptidase 4/metabolismo , Selectina E/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , CamundongosRESUMO
Hematopoietic stem/progenitor cell (HSPC) and leukemic cell homing is an important biological phenomenon that occurs through key interactions between adhesion molecules. Tethering and rolling of the cells on endothelium, the crucial initial step of the adhesion cascade, is mediated by interactions between selectins expressed on endothelium to their ligands expressed on HSPCs/leukemic cells in flow. Although multiple factors that affect the rolling behavior of the cells have been identified, molecular mechanisms that enable the essential slow and stable cell rolling remain elusive. Here, using a microfluidics-based single-molecule live cell fluorescence imaging, we reveal that unique spatiotemporal dynamics of selectin ligands on the membrane tethers and slings, which are distinct from that on the cell body, play an essential role in the rolling of the cell. Our results suggest that the spatial confinement of the selectin ligands to the tethers and slings together with the rapid scanning of a large area by the selectin ligands, increases the efficiency of selectin-ligand interactions during cell rolling, resulting in slow and stable rolling of the cell on the selectins. Our findings provide novel insights and contribute significantly to the molecular-level understanding of the initial and essential step of the homing process.