RESUMO
Streptococcus pneumoniae (S.p.) is the most common causative agent of community-acquired pneumonia worldwide. A key pathogenic mechanism that exacerbates severity of disease is the disruption of the alveolar-capillary barrier. However, the specific virulence mechanisms responsible for this in the human lung are not yet fully understood.In this study, we infected living human lung tissue with S.p. and observed a significant degradation of the central junctional proteins occludin and VE-cadherin, indicating barrier disruption. Surprisingly, neither pneumolysin, bacterial hydrogen peroxide nor pro-inflammatory activation were sufficient to cause this junctional degradation. Instead, pneumococcal infection led to a significant decrease of pH (approximately 6), resulting in acidification of the alveolar microenvironment, which was linked to junctional degradation. Stabilising the pH at physiological levels during infection reversed this effect, even in a therapeutic-like approach.Further analysis of bacterial metabolites and RNA sequencing revealed sugar consumption and subsequent lactate production were the major factors contributing to bacterially induced alveolar acidification, which also hindered the release of critical immune factors.Our findings highlight bacterial metabolite-induced acidification as an independent virulence mechanism for barrier disruption and inflammatory dysregulation in pneumonia. Thus, our data suggest that strictly monitoring and buffering alveolar pH during infections caused by fermentative bacteria could serve as an adjunctive therapeutic strategy for sustaining barrier integrity and immune response.
RESUMO
BACKGROUND: Streptococcus dysgalactiae subspecies equisimilis (SDSE) is increasingly recognized as an emerging cause of invasive diseases including necrotizing soft tissue infections (NSTIs). In contrast to the closely related Streptococcus pyogenes, SDSE infections mainly affect older and comorbid patients. Biofilm formation has been demonstrated in soft tissue biopsies of S. pyogenes NSTI cases. RESULTS: Here, we show that bacterial aggregations indicative of biofilms are also present in SDSE NSTI. Although streptokinase (Ska) activity and biofilm formation did not correlate in a diverse set of clinical SDSE isolates, addition of exogenous Ska at an early time point prevented biofilm formation for selected strains. Deletion of ska in SDSE S118 strain resulted in increased biofilm forming capacity. Ska-deficient mutant strain was characterized by a higher metabolic activity and consequent metabolome profiling of biofilms identified higher deposition of a wide range of metabolites as compared to the wild-type. CONCLUSIONS: Our results argue that Ska suppresses biofilm formation in SDSE independent of its original plasminogen converting activity. However, the impact of biofilms and its consequences for patient outcomes in streptococcal NSTIs remain to be elucidated.
Assuntos
Biofilmes , Infecções Estreptocócicas , Streptococcus , Estreptoquinase , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Estreptoquinase/genética , Estreptoquinase/metabolismo , Streptococcus/genética , Streptococcus/efeitos dos fármacos , Streptococcus/fisiologia , Humanos , Infecções Estreptocócicas/microbiologia , Infecções dos Tecidos Moles/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved ß-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.
Assuntos
Flavobacteriaceae , Xilanos , Xilanos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Polissacarídeos/metabolismo , Flavobacteriaceae/genética , GenômicaRESUMO
SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.
Assuntos
Complexo Antígeno-Anticorpo/imunologia , Autoanticorpos/imunologia , COVID-19/prevenção & controle , Proteínas do Capsídeo/efeitos adversos , ChAdOx1 nCoV-19/efeitos adversos , Contaminação de Medicamentos , Vetores Genéticos/efeitos adversos , Células HEK293/imunologia , Imunoglobulina G/imunologia , Fator Plaquetário 4/imunologia , Púrpura Trombocitopênica Idiopática/etiologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/efeitos adversos , Adenoviridae/imunologia , Animais , Complexo Antígeno-Anticorpo/ultraestrutura , Autoanticorpos/biossíntese , Síndrome de Vazamento Capilar/etiologia , Proteínas do Capsídeo/imunologia , Linhagem Celular Transformada , ChAdOx1 nCoV-19/química , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/toxicidade , Difusão Dinâmica da Luz , Epitopos/química , Epitopos/imunologia , Armadilhas Extracelulares/imunologia , Extravasamento de Materiais Terapêuticos e Diagnósticos/etiologia , Vetores Genéticos/imunologia , Células HEK293/química , Humanos , Imageamento Tridimensional , Imunoglobulina G/biossíntese , Inflamação , Camundongos , Microscopia/métodos , Ativação Plaquetária , Proteômica , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/imunologia , Trombose dos Seios Intracranianos/diagnóstico por imagem , Trombose dos Seios Intracranianos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Cultura de VírusRESUMO
Formaldehyde is a toxic metabolite that is formed in large quantities during bacterial utilization of the methoxy sugar 6-O-methyl-d-galactose, an abundant monosaccharide in the red algal polysaccharide porphyran. Marine bacteria capable of metabolizing porphyran must therefore possess suitable detoxification systems for formaldehyde. We demonstrate here that detoxification of formaldehyde in the marine Flavobacterium Zobellia galactanivorans proceeds via the ribulose monophosphate pathway. Simultaneously, we show that the genes encoding the key enzymes of this pathway are important for maintaining high formaldehyde resistance. Additionally, these genes are upregulated in the presence of porphyran, allowing us to connect porphyran degradation to the detoxification of formed formaldehyde.
Assuntos
Metabolismo dos Carboidratos , Formaldeído , Carboidratos , Formaldeído/metabolismo , PolissacarídeosRESUMO
INTRODUCTION: Respiratory tract infections are a worldwide health problem for humans and animals. Different cell types produce lipid mediators in response to infections, which consist of eicosanoids like hydroxyeicosatetraenoic acids (HETEs) or oxylipins like hydroxydocosahexaenoic acids (HDHAs). Both substance classes possess immunomodulatory functions. However, little is known about their role in respiratory infections. OBJECTIVES: Here, we aimed to analyze the lipid mediator imprint of different organs of C57BL/6J mice after intranasal mono-infections with Streptococcus pneumoniae (pneumococcus), Staphylococcus aureus or Influenza A virus (IAV) as wells as pneumococcal-IAV co-infection. METHODS: C57BL/6J mice were infected with different pathogens and lungs, spleen, and plasma were collected. Lipid mediators were analyzed using HPLC-MS/MS. In addition, spatial-distribution of sphingosine 1-phosphate (S1P) and ceramide 1-phosphates (C1P) in tissue samples was examined using MALDI-MS-Imaging. The presence of bacterial pathogens in the lung was confirmed via immunofluorescence staining. RESULTS: We found IAV specific changes for different HDHAs and HETEs in mouse lungs as well as enhanced levels of 20-HETE in severe S. aureus infection. Moreover, MALDI-MS-Imaging analysis showed an accumulation of C1P and a decrease of S1P during co-infection in lung and spleen. Long chain C1P was enriched in the red and not in the white pulp of the spleen. CONCLUSIONS: Lipid mediator analysis showed that host synthesis of bioactive lipids is in part specific for a certain pathogen, in particular for IAV infection. Furthermore, MS-Imaging displayed great potential to study infections and revealed changes of S1P and C1P in lungs and spleen of co-infected animals, which was not described before.
Assuntos
Coinfecção , Vírus da Influenza A , Infecções Respiratórias , Animais , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus , Streptococcus pneumoniae , Espectrometria de Massas em TandemRESUMO
To be a successful pathogen, Staphylococcus aureus has to adapt its metabolism to the typically oxygen- and glucose-limited environment of the host. Under fermenting conditions and in the presence of glucose, S. aureus uses glycolysis to generate ATP via substrate-level phosphorylation and mainly lactic acid fermentation to maintain the redox balance by reoxidation of NADH equivalents. However, it is less clear how S. aureus proceeds under anoxic conditions and glucose limitation, likely representing the bona fide situation in the host. Using a combination of proteomic, transcriptional, and metabolomic analyses, we show that in the absence of an abundant glycolysis substrate, the available carbon source pyruvate is converted to acetyl coenzyme A (AcCoA) in a pyruvate formate-lyase (PflB)-dependent reaction to produce ATP and acetate. This process critically depends on derepression of the catabolite control protein A (CcpA), leading to upregulation of pflB transcription. Under these conditions, ethanol production is repressed to prevent wasteful consumption of AcCoA. In addition, our global and quantitative characterization of the metabolic switch prioritizing acetate over lactate fermentation when glucose is absent illustrates examples of carbon source-dependent control of colonization and pathogenicity factors.IMPORTANCE Under infection conditions, S. aureus needs to ensure survival when energy production via oxidative phosphorylation is not possible, e.g., either due to the lack of terminal electron acceptors or by the inactivation of components of the respiratory chain. Under these conditions, S. aureus can switch to mixed-acid fermentation to sustain ATP production by substrate level phosphorylation. The drop in the cellular NAD+/NADH ratio is sensed by the repressor Rex, resulting in derepression of fermentation genes. Here, we show that expression of fermentation pathways is further controlled by CcpA in response to the availability of glucose to ensure optimal resource utilization under growth-limiting conditions. We provide evidence for carbon source-dependent control of colonization and virulence factors. These findings add another level to the regulatory network controlling mixed-acid fermentation in S. aureus and provide additional evidence for the lifestyle-modulating effect of carbon sources available to S. aureus.
Assuntos
Carbono/metabolismo , Staphylococcus aureus/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Fermentação , Regulação Bacteriana da Expressão Gênica , Ácido Láctico/metabolismo , Oxigênio/metabolismo , Ácido Pirúvico/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimentoRESUMO
Amebiasis, a global intestinal parasitic disease, is due to Entamoeba histolytica. This parasite, which feeds on bacteria in the large intestine of its human host, can trigger a strong inflammatory response upon invasion of the colonic mucosa. Whereas information about the mechanisms which are used by the parasite to cope with oxidative and nitrosative stresses during infection is available, knowledge about the contribution of bacteria to these mechanisms is lacking. In a recent study, we demonstrated that enteropathogenic Escherichia coli O55 protects E. histolytica against oxidative stress. Resin-assisted capture (RAC) of oxidized (OX) proteins coupled to mass spectrometry (OX-RAC) was used to investigate the oxidation status of cysteine residues in proteins present in E. histolytica trophozoites incubated with live or heat-killed E. coli O55 and then exposed to H2O2-mediated oxidative stress. We found that the redox proteome of E. histolytica exposed to heat-killed E. coli O55 is enriched with proteins involved in redox homeostasis, lipid metabolism, small molecule metabolism, carbohydrate derivative metabolism, and organonitrogen compound biosynthesis. In contrast, we found that proteins associated with redox homeostasis were the only OX-proteins that were enriched in E. histolytica trophozoites which were incubated with live E. coli O55. These data indicate that E. coli has a profound impact on the redox proteome of E. histolytica. Unexpectedly, some E. coli proteins were also co-identified with E. histolytica proteins by OX-RAC. We demonstrated that one of these proteins, E. coli malate dehydrogenase (EcMDH) and its product, oxaloacetate, are key elements of E. coli-mediated resistance of E. histolytica to oxidative stress and that oxaloacetate helps the parasite survive in the large intestine. We also provide evidence that the protective effect of oxaloacetate against oxidative stress extends to Caenorhabditis elegans.
Assuntos
Entamoeba histolytica/efeitos dos fármacos , Entamebíase/tratamento farmacológico , Escherichia coli/fisiologia , Ácido Oxaloacético/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Amebíase/tratamento farmacológico , Amebíase/metabolismo , Amebíase/parasitologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/parasitologia , Células Cultivadas , Entamebíase/metabolismo , Entamebíase/parasitologia , Células HeLa , Humanos , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/metabolismo , Intestino Grosso/parasitologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBARESUMO
The Gram-positive bacterium Streptococcus pneumoniae can cause a broad range of severe diseases including pneumonia and septicemia. The pneumococcal pathophysiology is highly dependent on host nutrients such as purines, pyrimidines, amino acids and carbon sources. Therefore, we aimed to decipher the metabolome with a metabolomics approach that allows for the investigation of the basic metabolic characteristics during growth in a chemical defined medium composed of typical host metabolites. By using a combination of 1H-NMR, HPLC-MS and GC-MS methods we monitored extracellular uptake and secretion of metabolites as well as the intracellular metabolic composition. Employing our validated protocol for the pneumococcal intracellular metabolome analysis, a time resolved snapshot of the primary metabolism of pneumococci was obtained. The intracellular metabolic profile indicates a high glycolytic flux and displays high concentrated precursors of peptidoglycan synthesis probably to fuel cell-wall-metabolism in growing cells. Furthermore, our data reflect the biochemical dependency for S. pneumoniae on external host derived nutrients such as nucleosides. These essential pathways may serve as new targets in the drug development against S. pneumoniae.
Assuntos
Meios de Cultura/química , Metabolismo Energético , Metaboloma , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/metabolismo , Aminoácidos/metabolismo , Glicólise , Metabolômica , Nucleosídeos/química , Peptidoglicano/biossínteseRESUMO
The immune system is permanently exposed to several environmental influences that can have adverse effects on immune cells or organs leading to immunosuppression or inappropriate immunostimulation, called direct immunotoxicity. The natural compound Tulipalin A (TUPA), a lactone with α-methylene-γ-butyrolactone moiety, can influence the immune system and lead to allergic contact dermatitis. This in vitro study focused on effects of TUPA using two immune cell lines (Jurkat T cells and THP-1 monocytes). To evaluate the immunotoxic potential of the compound, a proteomic approach applying 2D gel electrophoresis and MALDI-TOF/TOF-MS in combination with metabolomic analysis was used after exposure of the cells to IC10 of TUPA. THP-1 cells showed a strong robustness to TUPA treatment since only five proteins were altered. In contrast, in Jurkat T cells an increase in the abundance of 66 proteins and a decrease of six proteins was determined. These intracellular proteins were mapped to biological processes. Especially an accumulation of chaperones and an influence on the purine synthesis were observed. The changes in purine synthesis were confirmed by metabolomic analysis. In conclusion, the data indicate possible target processes of low doses of TUPA in Jurkat T cells and provides knowledge of how TUPA affects the functionality of immune cells.
Assuntos
4-Butirolactona/análogos & derivados , Proteômica/métodos , 4-Butirolactona/imunologia , 4-Butirolactona/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Dermatite Alérgica de Contato/etiologia , Eletroforese em Gel Bidimensional , Humanos , Células Jurkat/efeitos dos fármacos , Células Jurkat/imunologia , Células Jurkat/metabolismo , Metaboloma , Dobramento de Proteína/efeitos dos fármacos , Purinas/biossíntese , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Testes de Toxicidade/métodosRESUMO
BACKGROUND: The emergence of antibiotic resistant pathogenic bacteria has reduced our ability to combat infectious diseases. At the same time the numbers of new antibiotics reaching the market have decreased. This situation has created an urgent need to discover novel antibiotic scaffolds. Recently, the application of pattern recognition techniques to identify molecular fingerprints in 'omics' studies, has emerged as an important tool in biomedical research and laboratory medicine to identify pathogens, to monitor therapeutic treatments or to develop drugs with improved metabolic stability, toxicological profile and efficacy. Here, we hypothesize that a combination of metabolic intracellular fingerprints and extracellular footprints would provide a more comprehensive picture about the mechanism of action of novel antibiotics in drug discovery programs. RESULTS: In an attempt to integrate the metabolomics approach as a classification tool in the drug discovery processes, we have used quantitative (1)H NMR spectroscopy to study the metabolic response of Escherichia coli cultures to different antibiotics. Within the frame of our study the effects of five different and well-known antibiotic classes on the bacterial metabolome were investigated both by intracellular fingerprint and extracellular footprint analysis. The metabolic fingerprints and footprints of bacterial cultures were affected in a distinct manner and provided complementary information regarding intracellular and extracellular targets such as protein synthesis, DNA and cell wall. While cell cultures affected by antibiotics that act on intracellular targets showed class-specific fingerprints, the metabolic footprints differed significantly only when antibiotics that target the cell wall were applied. In addition, using a training set of E. coli fingerprints extracted after treatment with different antibiotic classes, the mode of action of streptomycin, tetracycline and carbenicillin could be correctly predicted. CONCLUSION: The metabolic profiles of E. coli treated with antibiotics with intracellular and extracellular targets could be separated in fingerprint and footprint analysis, respectively and provided complementary information. Based on the specific fingerprints obtained for different classes of antibiotics, the mode of action of several antibiotics could be predicted. The same classification approach should be applicable to studies of other pathogenic bacteria.
Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Carbenicilina/farmacologia , Descoberta de Drogas , Escherichia coli/classificação , Testes de Sensibilidade Microbiana , Análise Multivariada , Projetos Piloto , Estreptomicina/farmacologia , Tetraciclina/farmacologiaRESUMO
Polyketides, such as erythromycin, are complex natural products with diverse therapeutic applications. They are synthesized by multi-modular megaenzymes, so-called polyketide synthases (PKSs). The macrolide core of erythromycin, 6-deoxyerythronolide B (6dEB), is produced by the deoxyerythronolide B synthase (DEBS) that consists of three proteins each with a size of 330-370 kDa. We cloned and investigated the expression of the corresponding gene cluster from Saccharopolyspora erythraea, which comprises more than 30 kb, in Bacillus subtilis. It is shown that the DEBS genes are functionally expressed in B. subtilis when the native eryAI-III operon was separated into three individual expression cassettes with optimized ribosomal binding sites. A synthesis of 6dEB could be detected by using the acetoin-inducible acoA promoter and a fed-batch simulating EnBase-cultivation strategy. B. subtilis was capable of the secretion of 6dEB into the medium. In order to improve the 6dEB production, several genomic modifications of this production strain were tested. This included the knockout of the native secondary metabolite clusters of B. subtilis for the synthesis of surfactin (26 kb), bacillaene (76 kb), and plipastatin (38 kb). It is revealed that the deletion of the prpBD operon, responsible for propionyl-CoA utilization, resulted in a significant increase of the 6dEB product yield when exogenous propionate is provided. Although the presented B. subtilis 6dEB production strain is not competitive with established Escherichia coli 6dEB production strains, the results of this study indicate that B. subtilis is a suitable heterologous host for the secretory production of a complex polyketide.
Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Eritromicina/análogos & derivados , Policetídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eritromicina/biossíntese , Engenharia Metabólica , Saccharopolyspora/enzimologia , Saccharopolyspora/genéticaRESUMO
AIMS: The rare association of flupirtine with liver injury is most likely caused by reactive quinone diimines and their oxidative formation may be influenced by the activities of N-acetyltransferases (NAT) that conjugate the less toxic metabolite D13223, and by glucuronosyltransferases (UGT) and glutathione S-transferases (GST) that generate stable terminal glucuronides and mercapturic acid derivatives, respectively. The influence of genetic polymorphisms of NAT2, UGT1A1 and GSTP1 on generation of the terminal mercapturic acid derivatives and analgesic effects was evaluated to identify potential genetic risk factors for hepatotoxicity of flupirtine. METHODS: Metabolic disposition of flupirtine was measured after intravenous administration (100 mg), after swallowing an immediate-release (IR) tablet (100 mg) and after repeated administration of modified release (MR) tablets (400 mg once daily 8 days) in 36 selected healthy subjects. Analgesic effects were measured using pain models (delayed onset of muscle soreness, electric pain). RESULTS: Flupirtine IR was rapidly but incompletely absorbed (â¼ 72%). Repeated administration of flupirtine MR showed lower bioavailability (â¼ 60%). Approximately 12% of bioavailable flupirtine IR and 8% of bioavailable flupiritine MR was eliminated as mercapturic acid derivatives into the urine independent of the UGT1A1, NAT2 and GSTP1 genotype. Carriers of variant GSTP1 alleles showed lower bioavailability but increased intestinal secretion of flupirtine and increased efficiency in experimental pain. Flupirtine was not a substrate for ABCB1 and ABCC2. CONCLUSIONS: Formation of mercapturic acid derivatives is a major elimination route for flupirtine in man. However, the theoretically toxic pathway is not influenced by the frequent polymorphisms of UGT1A1, NAT2 and GSTP1.
Assuntos
Acetilcisteína , Aminopiridinas , Analgésicos , Arilamina N-Acetiltransferase/genética , Glucuronosiltransferase/genética , Glutationa S-Transferase pi/genética , Polimorfismo Genético , Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Ativação Metabólica/efeitos dos fármacos , Ativação Metabólica/genética , Administração Oral , Adulto , Aminopiridinas/administração & dosagem , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacocinética , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Analgésicos/farmacocinética , Animais , Arilamina N-Acetiltransferase/metabolismo , Disponibilidade Biológica , Estudos Cross-Over , Preparações de Ação Retardada , Cães , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Glucuronosiltransferase/metabolismo , Glutationa S-Transferase pi/metabolismo , Voluntários Saudáveis , Humanos , Injeções Intravenosas , Células Madin Darby de Rim Canino , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Limiar da Dor/efeitos dos fármacos , Adulto JovemRESUMO
BACKGROUND: Bacterial protein biosynthesis usually depends on a formylated methionyl start tRNA but Staphylococcus aureus is viable in the absence of Fmt, the tRNAMet formyl transferase. fmt mutants exhibit reduced growth rates indicating that the function of certain proteins depends on formylated N-termini but it has remained unclear, which cellular processes are abrogated by the lack of formylation. RESULTS: In order to elucidate how global metabolic processes are affected by the absence of formylated proteins the exometabolome of an S. aureus fmt mutant was compared with that of the parental strain and the transcription of corresponding enzymes was analyzed to identify possible regulatory changes. The mutant consumed glucose and other carbon sources slower than the wild type. While the turnover of several metabolites remained unaltered fmt inactivation led to increases pyruvate release and, concomitantly, reduced pyruvate dehydrogenase activity. In parallel, the release of the pyruvate-derived metabolites lactate, acetoin, and alanine was reduced. The anaerobic degradation of arginine was also reduced in the fmt mutant compared to the wild-type strain. Moreover, the lack of formylated proteins caused increased susceptibility to the antibiotics trimethoprim and sulamethoxazole suggesting that folic acid-dependant pathways were perturbed in the mutant. CONCLUSIONS: These data indicate that formylated proteins are crucial for specific bacterial metabolic processes and they may help to understand why it has remained important during bacterial evolution to initiate protein biosynthesis with a formylated tRNAMet.
Assuntos
Proteínas de Bactérias/metabolismo , Metabolismo , N-Formilmetionina/metabolismo , Modificação Traducional de Proteínas , Staphylococcus aureus/metabolismo , Carbono/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Ácido Pirúvico/metabolismoRESUMO
Staphylococcus aureus is a major pathogen, which has to defend against reactive oxygen and electrophilic species encountered during infections. Activated macrophages produce the immunometabolite itaconate as potent electrophile and antimicrobial upon pathogen infection. In this work, we used transcriptomics, metabolomics and shotgun redox proteomics to investigate the specific stress responses, metabolic changes and redox modifications caused by sublethal concentrations of itaconic acid in S. aureus. In the RNA-seq transcriptome, itaconic acid caused the induction of the GlnR, KdpDE, CidR, SigB, GraRS, PerR, CtsR and HrcA regulons and the urease-encoding operon, revealing an acid and oxidative stress response and impaired proteostasis. Neutralization using external urea as ammonium source improved the growth and decreased the expression of the glutamine synthetase-controlling GlnR regulon, indicating that S. aureus experienced ammonium starvation upon itaconic acid stress. In the extracellular metabolome, the amounts of acetate and formate were decreased, while secretion of pyruvate and the neutral product acetoin were strongly enhanced to avoid intracellular acidification. Exposure to itaconic acid affected the amino acid uptake and metabolism as revealed by the strong intracellular accumulation of lysine, threonine, histidine, aspartate, alanine, valine, leucine, isoleucine, cysteine and methionine. In the proteome, itaconic acid caused widespread S-bacillithiolation and S-itaconation of redox-sensitive antioxidant and metabolic enzymes, ribosomal proteins and translation factors in S. aureus, supporting its oxidative and electrophilic mode of action in S. aureus. In phenotype analyses, the catalase KatA, the low molecular weight thiol bacillithiol and the urease provided protection against itaconic acid-induced oxidative and acid stress in S. aureus. Altogether, our results revealed that under physiological infection conditions, such as in the acidic phagolysome, itaconic acid is a highly effective antimicrobial against multi-resistant S. aureus isolates, which acts as weak acid causing an acid, oxidative and electrophilic stress response, leading to S-bacillithiolation and itaconation.
Assuntos
Compostos de Amônio , Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Staphylococcus aureus Resistente à Meticilina/metabolismo , Urease/metabolismo , Urease/farmacologia , Estresse Oxidativo , Anti-Infecciosos/metabolismo , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Campylobacter (C.) spp. represent one of the most important causes for food-borne bacterial pathogen in humans worldwide. The aim of this study was to investigate metabolic requirements of two Campylobacter strains of different species based on substrate utilisation (in vitro). Based on these results, a correlation between the colonisation and the available substrates in different intestinal sections was recorded using an animal model. Campylobacter coli (ST-5777) and C. jejuni (ST-122) were used to inoculate 16 pigs, respectively, and one group of 16 pigs was used as control. The strains differed significantly in substrate utilisation - C. coli was able to metabolise various substrates (acetate, asparagine, serine, fucose, and propionate), while C. jejuni only utilised serine. Metabolomic analysis of intestinal content from different gut sections showed the presence of all previously tested metabolites, except for fucose. A significantly larger amount of glucose was found in the jejunum of those pigs infected with C. coli, while neither strain utilised it in vitro. The analysis of the intestinal contents revealed a very low proportion of Campylobacterales in the total microbiome, suggesting that the small percentage of the inoculated Campylobacter strains in the gut microflora of the animals is too low to cause differences between the control and infected groups in the composition of the metabolome. Nevertheless, knowledge of specific nutritional requirements of the pathogens combined with proof of different metabolites in the intestinal segments may provide clues about the site of colonisation in the host and improve our understanding of this zoonotic germ.
Assuntos
Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Campylobacter , Doenças dos Suínos , Animais , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Fucose , Humanos , Intestinos , Serina , SuínosRESUMO
The global turkey industry is confronted with emerging challenges regarding health and welfare. Performance and disease resilience are directly linked to gut health. A clear definition of a healthy gut is a prerequisite to developing new strategies for improved gut health and, thus, general health, welfare and productivity. To date, detailed knowledge about gut health characteristics, especially during the critical fattening period, is still lacking for turkeys. Therefore, the goal of this study was to describe the morphology, microbiota, and metabolome along the intestinal tract of clinically healthy Salmonella- and Campylobacter-free commercial turkey hens throughout the fattening period from 7 to 10 wk posthatch, and obtain information on the stability of the investigated values over time. Feed changes were avoided directly preceding and during the investigation period. Investigation methods included histomorphometric measurement of intestinal villi and crypts, Illumina-sequencing for microbiota analysis, and proton nuclear magnetic resonance spectroscopy for metabolite identification and quantification. Overall, the study demonstrated a high repeatability across all 3 experiments and gut section differences observed coincided with their functions. It was demonstrated that gut maturation, defined by gut microbiota stability, is reached earlier in the ceca than any other intestinal section where morphological changes are ongoing throughout the fattening period. Therefore, the present study provides valuable information necessary to advise future studies on the development and implementation of measures to support gut maturation and establish a protective microbiota in commercial turkeys.
Assuntos
Microbioma Gastrointestinal , Microbiota , Feminino , Animais , Perus , Galinhas , MetabolomaRESUMO
Tafazzin-an acyltransferase-is involved in cardiolipin (CL) remodeling. CL is associated with mitochondrial function, structure and more recently with cell proliferation. Various tafazzin isoforms exist in humans. The role of these isoforms in cardiolipin remodeling is unknown. Aim of this study was to investigate if specific isoforms like Δ5 can restore the wild type phenotype with respect to CL composition, cellular proliferation and gene expression profile. In addition, we aimed to determine the molecular mechanism by which tafazzin can modulate gene expression by applying promoter analysis and (Ingenuity Pathway Analyis) IPA to genes regulated by TAZ-deficiency. Expression of Δ5 and rat full length TAZ in C6-TAZ- cells could fully restore CL composition and-as proven for Δ5-this is naturally associated with restoration of mitochondrial respiration. A similar restoration of CL-composition could not be observed after re-expression of an enzymatically dead full-length rat TAZ (H69L; TAZMut). Re-expression of only rat full length TAZ could restore proliferation rate. Surprisingly, the Δ5 variant failed to restore wild-type proliferation. Further, as expected, re-expression of the TAZMut variant completely failed to reverse the gene expression changes, whereas re-expression of the TAZ-FL variant largely did so and the Δ5 variant to somewhat less extent. Very likely TAZ-deficiency provokes substantial long-lasting changes in cellular lipid metabolism which contribute to changes in proliferation and gene expression, and are not or only very slowly reversible.
RESUMO
[This corrects the article DOI: 10.3389/fgene.2022.931017.].
RESUMO
Vaccine-induced immune thrombotic thrombocytopenia (VITT; synonym, thrombosis with thrombocytopenia syndrome, is associated with high-titer immunoglobulin G antibodies directed against platelet factor 4 (PF4). These antibodies activate platelets via platelet FcγIIa receptors, with platelet activation greatly enhanced by PF4. Here we summarize the current concepts in the pathogenesis of VITT. We first address parallels between heparin-induced thrombocytopenia and VITT, and provide recent findings on binding of PF4 to adenovirus particles and non-assembled adenovirus proteins in the 2 adenovirus vector-based COVID-19 vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S. Further, we discuss the potential role of vaccine constituents such as glycosaminoglycans, EDTA, polysorbate 80, human cell-line proteins and nucleotides as potential binding partners of PF4. The immune response towards PF4 in VITT is likely triggered by a proinflammatory milieu. Human cell-line proteins, non-assembled virus proteins, and potentially EDTA may contribute to the proinflammatory state. The transient nature of the immune response towards PF4 in VITT makes it likely that-as in heparin-induced thrombocytopenia -marginal zone B cells are key for antibody production. Once high-titer anti-PF4 antibodies have been formed 5 to 20 days after vaccination, they activate platelets and granulocytes. Activated granulocytes undergo NETosis and the released DNA also forms complexes with PF4, which fuels the Fcγ receptor-dependent cell activation process, ultimately leading to massive thrombin generation. Finally, we summarize our initial observations indicating that VITT-like antibodies might also be present in rare patients with recurrent venous and arterial thrombotic complications, independent of vaccination.