Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 229: 108143, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34437906

RESUMO

BACKGROUND: Current treatment options for onchocerciasis are sub-optimal, prompting research and development of a safe cure (macrofilaricide). Onchocerca ochengi, a parasite of cattle, is used as a close surrogate for the human parasite O. volvulus in a murine model for pre-clinical screening of macrofilaricides. Skin from naturally infected cattle have been used in previous studies as a reliable source of parasite material. However, there is limited knowledge on how source-related factors such as the microfilaridermia status of the cattle, the nodule load and nodular worm viability may affect survival of male O. ochengi worms implanted in the rodent hosts. Such relationships were investigated in this study. METHODS: Dermal tissue and nodules were obtained from Gudali cattle, dissected and cultured to obtain migrating microfilariae (mf) and male worms. Emerged male worms were implanted into SCID mice and Gerbils (Meriones unguiculatus) and recovery rates were determined upon 42 days post implantation. Finally, nodules were processed for histology and embryogram analyses to assess the nodular worm viability and fertility, respectively. RESULTS: Of the 69 cattle sampled, 24 (34.8%) were mf+ and 45 (65.2%) were mf-. The mean nodule loads were 180.5 ± 117.7 (mf+) and 110.6 ± 102.7 (mf-) (p = 0.0186). The mean male worm harvest from nodules were 76.8 ± 120.3 and 47.2 ± 33.4 (p = 0.2488) for mf+ and mf- cattle, respectively. The number of male worms per 100 nodules were 57/100 and 46/100 nodules for mf+ and mf- cows, respectively. Female worms from nodules of mf- cows had higher counts of both normal and abnormal embryos with higher proportions of dead nodular worms evinced by histology compared to those from mf+ cows. A total of 651 worms were implanted into mice and gerbils, out of which 129 (19.81%) were recovered. Logistic regression analysis indicated that the microfilaridermia status of the cattle (presence of mf) (OR = 4.3319; P = 0.001) is the single most important predictor of the success of male worm recovery after implantation into rodents. CONCLUSION: Microfilaridermic cattle provide a promising source of adult O. ochengi. Male worms from this group of cattle have a better success rate of survival in a murine implant model. Nevertheless, in the programmatic point of view, amicrofilaridermic Gudali cattle would still constitute an important source of O. ochengi male worms with relatively good viability after implantation into rodents.


Assuntos
Doenças dos Bovinos/parasitologia , Onchocerca/fisiologia , Oncocercose/veterinária , Animais , Bovinos , Modelos Animais de Doenças , Feminino , Fertilidade , Gerbillinae , Masculino , Camundongos , Camundongos SCID , Microfilárias/crescimento & desenvolvimento , Microfilárias/fisiologia , Análise Multivariada , Onchocerca/crescimento & desenvolvimento , Oncocercose/parasitologia , Análise de Regressão
2.
Parasit Vectors ; 12(1): 14, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621774

RESUMO

BACKGROUND: Loiasis, an often-neglected tropical disease, is a threat to the success of lymphatic filariasis and onchocerciasis elimination programmes in rainforest areas of the central and western Africa. Its control and even its elimination might be possible through the use of a safe macrofilaricide, a prophylactic drug, or perhaps a vaccine. This present study evaluated the effect of flubendazole (FLBZ) on the development of Loa loa L3 in vitro and in vivo. METHODS: Infective stages of L. loa were isolated and co-cultured in Dulbecco's Modified Eagle's Medium in the presence of monkey kidney epithelial cells (LLC-MK2) feeder cells. FLBZ and its principal metabolites, reduced flubendazole (RFLBZ) and hydrolyzed flubendazole (HFLBZ), were screened in vitro at concentrations 0.05, 0.1, 0.5, 1 and 10 µg/ml. The viability of the parasites was assessed microscopically daily for 15 days. For in vivo study, a total of 48 CcR3 KO mice were infected subcutaneously with 200 L. loa L3 and treated with 10 mg/kg FLBZ once daily for 5 consecutive days. Twenty-four animals were used as control and received L3 and vehicle. They were dissected at 5, 10, 15 and 20 days post-treatment for worm recovery. RESULTS: The motility of L3 larvae in vitro was reduced from the second day of incubation with drugs at in vivo plasma concentration levels, with a strong correlation found between reduced motility and increased drug concentration (Spearman's rho = -0.9, P < 0.0001). Except for HFLBZ (0.05 µg/ml and 0.01 µg/ml), all concentrations of FLBZ, HFLBZ and RFLBZ interrupted the moulting of L. loa infective larvae to L4. In vivo, regardless of the experimental group, there was a decrease in parasite recovery with time. However, at each time point this reduction was more pronounced in the group of animals treated with FLBZ compared to equivalent control. Parasites were recovered from the flubendazole-treated groups only on day 5 post-inoculation at an average rate of 2.1%, a value significantly lower (Mann-Whitney U-test, U = 28, P = 0.0156) than the average of 31.1% recovered from the control group. CONCLUSIONS: This study reveals the ability of flubendazole to inhibit the development of L. loa L3 both in vitro and in vivo, and in addition validates the importance of in vitro and animal models of L. loa as tools for the development of drugs against loiasis.


Assuntos
Filaricidas/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Loa/efeitos dos fármacos , Loíase/parasitologia , Mebendazol/análogos & derivados , África Central/epidemiologia , África Ocidental/epidemiologia , Animais , Linhagem Celular , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Filaricidas/química , Filaricidas/uso terapêutico , Hidrólise , Larva/efeitos dos fármacos , Loa/crescimento & desenvolvimento , Loíase/tratamento farmacológico , Mebendazol/química , Mebendazol/farmacologia , Mebendazol/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Movimento/efeitos dos fármacos , Oncocercose/parasitologia , Oncocercose/prevenção & controle , Oxirredução
3.
Nat Commun ; 10(1): 1429, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926803

RESUMO

Elimination of the helminth disease, river blindness, remains challenging due to ivermectin treatment-associated adverse reactions in loiasis co-infected patients. Here, we address a deficit in preclinical research tools for filarial translational research by developing Loa loa mouse infection models. We demonstrate that adult Loa loa worms in subcutaneous tissues, circulating microfilariae (mf) and presence of filarial biomarkers in sera occur following experimental infections of lymphopenic mice deficient in interleukin (IL)-2/7 gamma-chain signaling. A microfilaraemic infection model is also achievable, utilizing immune-competent or -deficient mice infused with purified Loa mf. Ivermectin but not benzimidazole treatments induce rapid decline (>90%) in parasitaemias in microfilaraemic mice. We identify up-regulation of inflammatory markers associated with allergic type-2 immune responses and eosinophilia post-ivermectin treatment. Thus, we provide validation of murine research models to identify loiasis biomarkers, to counter-screen candidate river blindness cures and to interrogate the inflammatory etiology of loiasis ivermectin-associated adverse reactions.


Assuntos
Loíase/patologia , Animais , Doença Crônica , Modelos Animais de Doenças , Eosinofilia/complicações , Eosinofilia/tratamento farmacológico , Eosinofilia/parasitologia , Feminino , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Ivermectina/uso terapêutico , Loa/efeitos dos fármacos , Loa/fisiologia , Loíase/complicações , Loíase/tratamento farmacológico , Linfopenia/complicações , Linfopenia/parasitologia , Linfopenia/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos SCID , Microfilárias/efeitos dos fármacos , Parasitemia/complicações , Parasitemia/parasitologia
4.
PLoS Negl Trop Dis ; 13(1): e0006356, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30650071

RESUMO

The Onchocerca ochengi adult implant and Brugia malayi microfilariemic Severe-Combined Immunodeficient (SCID) mouse models are validated screens to measure macrofilaricidal and microfilaricidal activities of candidate onchocerciasis drugs. The purpose of this study was to assess whether 5 daily sub-cutaneous (s.c.) injections of standard flubendazole (FBZ) suspension (10mg/kg), a single s.c. injection (10mg/kg) or 5 daily repeated oral doses of FBZ amorphous solid dispersion (ASD) formulation (0.2, 1.5 or 15mg/kg) mediated macrofilaricidal efficacy against O. ochengi male worms implanted into SCID mice. The direct microfilaricidal activity against circulating B. malayi microfilariae of single dose FBZ ASD formulation (2 or 40 mg/kg) was also evaluated and compared against the standard microfilaricide, ivermectin (IVM). Systemic exposures of FBZ/FBZ metabolites achieved following dosing were measured by pharmacokinetic (PK) bioanalysis. At necropsy, five weeks following start of FBZ SC injections, there were significant reductions in burdens of motile O. ochengi worms following multiple injections (93%) or single injection (82%). Further, significant proportions of mice dosed following multiple injections (5/6; 83%) or single injection (6/10; 60%) were infection negative (drug-cured). In comparison, no significant reduction in recovery of motile adult O. ochengi adult worms was obtained in any multiple-oral dosage group. Single oral-dosed FBZ did not mediate any significant microfilaricidal activity against circulating B. malayi mf at 2 or 7 days compared with >80% efficacy of single dose IVM. In conclusion, multiple oral FBZ formulation doses, whilst achieving substantial bioavailability, do not emulate the efficacy delivered by the parenteral route in vivo against adult O. ochengi. PK analysis determined FBZ efficacy was related to sustained systemic drug levels rather than achievable Cmax. PK modelling predicted that oral FBZ would have to be given at low dose for up to 5 weeks in the mouse model to achieve a matching efficacious exposure profile.


Assuntos
Brugia Malayi/efeitos dos fármacos , Filaricidas/farmacologia , Mebendazol/análogos & derivados , Microfilárias/efeitos dos fármacos , Onchocerca/efeitos dos fármacos , Oncocercose/tratamento farmacológico , Administração Oral , Animais , Modelos Animais de Doenças , Filaricidas/administração & dosagem , Ivermectina/administração & dosagem , Ivermectina/farmacologia , Masculino , Mebendazol/administração & dosagem , Mebendazol/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Carga Parasitária
5.
Sci Transl Med ; 11(483)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867321

RESUMO

There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided >90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations >10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis.


Assuntos
Filariose Linfática/tratamento farmacológico , Filariose Linfática/microbiologia , Macrolídeos/administração & dosagem , Macrolídeos/uso terapêutico , Oncocercose/tratamento farmacológico , Oncocercose/microbiologia , Wolbachia/fisiologia , Administração Oral , Animais , Modelos Animais de Doenças , Filariose Linfática/sangue , Feminino , Macrolídeos/efeitos adversos , Masculino , Camundongos Endogâmicos BALB C , Camundongos SCID , Oncocercose/sangue , Resultado do Tratamento , Tilosina/sangue , Tilosina/síntese química , Tilosina/química , Tilosina/uso terapêutico
6.
Sci Transl Med ; 11(491)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068442

RESUMO

Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targets Wolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination of Wolbachia in the in vivo Litomosoides sigmodontis filarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantify Wolbachia elimination in Brugia pahangi filarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed in L. sigmodontis, Brugia malayi, and Onchocerca ochengi in vivo preclinical models of filarial disease and in vitro selectivity against Loa loa (a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.


Assuntos
Antibacterianos/uso terapêutico , Descoberta de Drogas , Filariose/tratamento farmacológico , Filariose/parasitologia , Filarioidea/fisiologia , Quinazolinas/uso terapêutico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Modelos Animais de Doenças , Feminino , Filarioidea/efeitos dos fármacos , Filarioidea/microbiologia , Ensaios de Triagem em Larga Escala , Camundongos , Fenótipo , Quinazolinas/química , Quinazolinas/farmacologia , Bibliotecas de Moléculas Pequenas , Wolbachia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA