Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Hematol ; 99(1): 12-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867341

RESUMO

Ferritin is a hetero-oligomeric nanocage, composed of 24 subunits of two types, FTH1 and FTL. It protects the cell from excess reactive iron, by storing iron in its cavity. FTH1 is essential for the recruitment of iron into the ferritin nanocage and for cellular ferritin trafficking, whereas FTL contributes to nanocage stability and iron nucleation inside the cavity. Here we describe a female patient with a medical history of severe hypoferritinemia without anemia. Following inadequate heavy IV iron supplementation, the patient developed severe iron overload and musculoskeletal manifestations. However, her serum ferritin levels rose only to normal range. Genetic analyses revealed an undescribed homozygous variant of FTL (c.92A > G), which resulted in a Tyr31Cys substitution (FTLY31C ). Analysis of the FTL structure predicted that the Y31C mutation will reduce the variant's stability. Expression of the FTLY31C variant resulted in significantly lower cellular ferritin levels compared with the expression of wild-type FTL (FTLWT ). Proteasomal inhibition significantly increased the initial levels of FTLY31C , but could not protect FTLY31C subunits from successive degradation. Further, variant subunits successfully incorporated into hetero-polymeric nanocages in the presence of sufficient levels of FTH1. However, FTLY31C subunits poorly assembled into nanocages when FTH1 subunit levels were low. These results indicate an increased susceptibility of unassembled monomeric FTLY31C subunits to proteasomal degradation. The decreased cellular assembly of FTLY31C -rich nanocages may explain the low serum ferritin levels in this patient and emphasize the importance of a broader diagnostic approach of hypoferritinemia without anemia, before IV iron supplementation.


Assuntos
Anemia , Apoferritinas , Deficiências de Ferro , Sobrecarga de Ferro , Feminino , Humanos , Anemia/genética , Apoferritinas/genética , Apoferritinas/metabolismo , Ferritinas , Ferro/metabolismo , Deficiências de Ferro/genética , Sobrecarga de Ferro/genética
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902088

RESUMO

Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.


Assuntos
Infecções Bacterianas , Ferritinas , Humanos , Ferritinas/metabolismo , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Coativadores de Receptor Nuclear/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361875

RESUMO

The sequestration of iron in case of infection, termed nutritional immunity, is an established strategy of host defense. However, the interaction between pathogens and the mammalian iron storage protein ferritin is hitherto not completely understood. To better characterize the function of ferritin in Gram-negative infections, we incubated iron-starved cultures of Salmonella Typhimurium and knockout mutant strains defective for major iron uptake pathways or Escherichia coli with horse spleen ferritin or ionic iron as the sole iron source. Additionally, we added bovine superoxide dismutase and protease inhibitors to the growth medium to assess the effect of superoxide and bacterial proteases, respectively, on Salmonella proliferation and reductive iron release. Compared to free ionic iron, ferritin-bound iron was less available to Salmonella, but was still sufficient to significantly enhance the growth of the bacteria. In the absence of various iron acquisition genes, the availability of ferritin iron further decreased. Supplementation with superoxide dismutase significantly reduced the growth of the ΔentC knockout strain with holoferritin as the sole iron source in comparison with ionic ferrous iron. In contrast, this difference was not observed in the wildtype strain, suggesting that superoxide dismutase undermines bacterial iron uptake from ferritin by siderophore-independent mechanisms. Ferritin seems to diminish iron availability for bacteria in comparison to ionic iron, and its iron sequestering effect could possibly be enhanced by host superoxide dismutase activity.


Assuntos
Ferritinas , Ferro , Bovinos , Animais , Cavalos , Ferritinas/metabolismo , Ferro/metabolismo , Enterobacteriaceae , Salmonella typhimurium , Superóxido Dismutase/metabolismo , Escherichia coli/metabolismo , Mamíferos/metabolismo
4.
J Am Chem Soc ; 142(46): 19551-19557, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166133

RESUMO

Biomineralization is mediated by specialized proteins that guide and control mineral sedimentation. In many cases, the active regions of these biomineralization proteins are intrinsically disordered. High-resolution structures of these proteins while they interact with minerals are essential for understanding biomineralization processes and the function of intrinsically disordered proteins (IDPs). Here we used the cavity of ferritin as a nanoreactor where the interaction between M6A, an intrinsically disordered iron-binding domain, and an iron oxide particle was visualized at high resolution by cryo-EM. Taking advantage of the differences in the electron-dose sensitivity of the protein and the iron oxide particles, we developed a method to determine the irregular shape of the particles found in our density maps. We found that the folding of M6A correlates with the detection of mineral particles in its vicinity. M6A interacts with the iron oxide particles through its C-terminal side, resulting in the stabilization of a helix at its N-terminal side. The stabilization of the helix at a region that is not in direct contact with the iron oxide particle demonstrates the ability of IDPs to respond to signals from their surroundings by conformational changes. These findings provide the first glimpse toward the long-suspected mechanism for biomineralization protein control over mineral microstructure, where unstructured regions of these proteins become more ordered in response to their interaction with the nascent mineral particles.


Assuntos
Apoferritinas/química , Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Compostos Férricos/química , Proteínas Intrinsicamente Desordenadas/química , Peptídeos/química , Sítios de Ligação , Biomineralização , Nanopartículas Magnéticas de Óxido de Ferro/química , Magnetospirillum/química , Modelos Moleculares , Tamanho da Partícula , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
5.
Blood ; 131(3): 342-352, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29074498

RESUMO

Ferritin turnover plays a major role in tissue iron homeostasis, and ferritin malfunction is associated with impaired iron homeostasis and neurodegenerative diseases. In most eukaryotes, ferritin is considered an intracellular protein that stores iron in a nontoxic and bioavailable form. In insects, ferritin is a classically secreted protein and plays a major role in systemic iron distribution. Mammalian ferritin lacks the signal peptide for classical endoplasmic reticulum-Golgi secretion but is found in serum and is secreted via a nonclassical lysosomal secretion pathway. This study applied bioinformatics and biochemical tools, alongside a protein trafficking mouse models, to characterize the mechanisms of ferritin secretion. Ferritin trafficking via the classical secretion pathway was ruled out, and a 2:1 distribution of intracellular ferritin between membrane-bound compartments and the cytosol was observed, suggesting a role for ferritin in the vesicular compartments of the cell. Focusing on nonclassical secretion, we analyzed mouse models of impaired endolysosomal trafficking and found that ferritin secretion was decreased by a BLOC-1 mutation but increased by BLOC-2, BLOC-3, and Rab27A mutations of the cellular trafficking machinery, suggesting multiple export routes. A 13-amino-acid motif unique to ferritins that lack the secretion signal peptide was identified on the BC-loop of both subunits and plays a role in the regulation of ferritin secretion. Finally, we provide evidence that secretion of iron-rich ferritin was mediated via the multivesicular body-exosome pathway. These results enhance our understanding of the mechanism of ferritin secretion, which is an important piece in the puzzle of tissue iron homeostasis.


Assuntos
Ferritinas/metabolismo , Vesículas Secretórias/metabolismo , Motivos de Aminoácidos , Animais , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Exossomos/ultraestrutura , Ferritinas/sangue , Ferritinas/química , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7
6.
Reprod Fertil Dev ; 29(10): 2005-2010, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28063464

RESUMO

Mitochondrial ferritin (FtMt) is a functional ferritin targeted to mitochondria that is highly expressed in the testis. To investigate the role of FtMt in the testis we set up a series of controlled matings between FtMt gene-deletion mice (FtMt-/-) with FtMt+/+ mice. We found that the number of newborns per litter and the fertility rate were strongly reduced for the FtMt-/- males, but not for the females, indicating that FtMt has an important role for male fertility. The morphology of the testis and of the spermatozoa of FtMt-/- mice was normal and we did not detect alterations in sperm parameters or in oxidative stress indices. In contrast, we observed that the cauda epididymides of FtMt-/- mice were significantly lighter and contained a lower number of spermatozoa compared with the controls. Also, the ATP content of FtMt-/- spermatozoa was found to be lower than that of FtMt+/+ spermatozoa. These data show that FtMt contributes to sperm epididymis maturation and to male fertility.


Assuntos
Ferritinas/genética , Fertilidade/genética , Infertilidade Masculina/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Animais , Ferritinas/metabolismo , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo/genética , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Testículo/metabolismo
7.
J Biol Chem ; 289(4): 2318-30, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24302717

RESUMO

There is compelling evidence that aminoglycoside (AG) antibiotics can induce the mammalian ribosome to suppress disease-causing nonsense mutations and partially restore the expression of functional proteins. However, prolonged AG treatment can cause detrimental side effects in patients, including most prominently, ototoxicity. Recent mechanistic discussions have considered the relative contributions of mitochondrial and cytoplasmic protein synthesis inhibition to AG-induced ototoxicity. We show that AGs inhibit mitochondrial protein synthesis in mammalian cells and perturb cell respiration, leading to a time- and dose-dependent increase in superoxide overproduction and accumulation of free ferrous iron in mitochondria caused by oxidative damage of mitochondrial aconitase, ultimately leading to cell apoptosis via the Fenton reaction. These deleterious effects increase with the increased potency of AG to inhibit the mitochondrial rather than cytoplasmic protein synthesis, which in turn correlates with their ototoxic potential in both murine cochlear explants and the guinea pig in vivo. The deleterious effects of AGs were alleviated in synthetic derivatives specially designed for the treatment of genetic diseases caused by nonsense mutations and possessing low affinity toward mitochondrial ribosomes. This work highlights the benefit of a mechanism-based drug redesign strategy that can maximize the translational value of "readthrough therapy" while mitigating drug-induced side effects. This approach holds promise for patients suffering from genetic diseases caused by nonsense mutations.


Assuntos
Aminoglicosídeos/farmacologia , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/metabolismo , Aminoglicosídeos/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Cóclea/metabolismo , Relação Dose-Resposta a Droga , Doenças Genéticas Inatas/tratamento farmacológico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Cobaias , Células HeLa , Humanos , Camundongos , Proteínas Mitocondriais/biossíntese , Consumo de Oxigênio/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo
8.
JCI Insight ; 9(5)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301068

RESUMO

Acute bacterial orchitis (AO) is a prevalent cause of intrascrotal inflammation, often resulting in sub- or infertility. A frequent cause eliciting AO is uropathogenic Escherichia coli (UPEC), a gram negative pathovar, characterized by the expression of various iron acquisition systems to survive in a low-iron environment. On the host side, iron is tightly regulated by iron regulatory proteins 1 and 2 (IRP1 and -2) and these factors are reported to play a role in testicular and immune cell function; however, their precise role remains unclear. Here, we showed in a mouse model of UPEC-induced orchitis that the absence of IRP1 results in less testicular damage and a reduced immune response. Compared with infected wild-type (WT) mice, testes of UPEC-infected Irp1-/- mice showed impaired ERK signaling. Conversely, IRP2 deletion led to a stronger inflammatory response. Notably, differences in immune cell infiltrations were observed among the different genotypes. In contrast with WT and Irp2-/- mice, no increase in monocytes and neutrophils was detected in testes of Irp1-/- mice upon UPEC infection. Interestingly, in Irp1-/- UPEC-infected testes, we observed an increase in a subpopulation of macrophages (F4/80+CD206+) associated with antiinflammatory and wound-healing activities compared with WT. These findings suggest that IRP1 deletion may protect against UPEC-induced inflammation by modulating ERK signaling and dampening the immune response.


Assuntos
Proteína 1 Reguladora do Ferro , Orquite , Masculino , Humanos , Camundongos , Animais , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Orquite/microbiologia , Inflamação , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Ferro/metabolismo
9.
Nat Commun ; 15(1): 3802, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714719

RESUMO

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Assuntos
Microscopia Crioeletrônica , Ferritinas , Coativadores de Receptor Nuclear , Ferritinas/metabolismo , Ferritinas/química , Ferritinas/genética , Humanos , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/química , Coativadores de Receptor Nuclear/genética , Ligação Proteica , Sítios de Ligação , Ferro/metabolismo , Autofagia , Modelos Moleculares , Células HEK293 , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/genética , Proteólise , Mutação
10.
BMC Med ; 11: 185, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23968282

RESUMO

BACKGROUND: Over the last few years, accumulating data have implicated a role for ferritin as a signaling molecule and direct mediator of the immune system. Hyperferritinemia is associated with a multitude of clinical conditions and with worse prognosis in critically ill patients. DISCUSSION: There are four uncommon medical conditions characterized by high levels of ferritin, namely the macrophage activation syndrome (MAS), adult onset Still's disease (AOSD), catastrophic antiphospholipid syndrome (cAPS) and septic shock, that share a similar clinical and laboratory features, and also respond to similar treatments, suggesting a common pathogenic mechanism. Ferritin is known to be a pro-inflammatory mediator inducing expression of pro-inflammatory molecules, yet it has opposing actions as a pro-inflammatory and as an immunosuppressant. We propose that the exceptionally high ferritin levels observed in these uncommon clinical conditions are not just the product of the inflammation but rather may contribute to the development of a cytokine storm. SUMMARY: Here we review and compare four clinical conditions and the role of ferritin as an immunomodulator. We would like to propose including these four conditions under a common syndrome entity termed "Hyperferritinemic Syndrome".


Assuntos
Síndrome Antifosfolipídica/sangue , Ferritinas/sangue , Síndrome de Ativação Macrofágica/sangue , Choque Séptico/sangue , Doença de Still de Início Tardio/sangue , Animais , Síndrome Antifosfolipídica/diagnóstico , Síndrome Antifosfolipídica/epidemiologia , Catarata/sangue , Catarata/congênito , Catarata/diagnóstico , Catarata/epidemiologia , Doença Catastrófica/epidemiologia , Humanos , Mediadores da Inflamação/sangue , Distúrbios do Metabolismo do Ferro/sangue , Distúrbios do Metabolismo do Ferro/congênito , Distúrbios do Metabolismo do Ferro/diagnóstico , Distúrbios do Metabolismo do Ferro/epidemiologia , Síndrome de Ativação Macrofágica/diagnóstico , Síndrome de Ativação Macrofágica/epidemiologia , Choque Séptico/diagnóstico , Choque Séptico/epidemiologia , Doença de Still de Início Tardio/diagnóstico , Doença de Still de Início Tardio/epidemiologia
11.
J Neural Transm (Vienna) ; 120(1): 37-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22446839

RESUMO

Iron accumulation and iron-related oxidative stress are involved in several pathological conditions and provide a rationale for the development of iron chelators as novel promising therapeutic strategies. Thus, we have recently synthesized multifunctional non-toxic, brain permeable iron chelating compounds, M30 and HLA20, possessing the neuroprotective N-propargyl moiety of the anti-Parkinsonian drug, monoamine oxidase (MAO)-B inhibitor, rasagiline and the antioxidant-iron chelating moiety of an 8-hydroxyquinoline derivative of the iron chelator, VK28. Here, we examined the hepatic regulatory effects of these novel compounds using two experimental approaches: chelation activity and glucose metabolism parameters. The present study demonstrated that M30 and HLA20 significantly decreased intracellular iron content and reduced ferritin expression levels in iron-loaded hepatoma Hep3B cells. In electron microscopy analysis, M30 was shown to reduce the electron-dense deposits of siderosomes by ~30 %, as well as down-regulate cytosolic ferritin particles observed in iron-overloaded cells. In vivo studies demonstrated that M30 administration (1 mg/kg, P.O. three times a week) reduced hepatic ferritin levels; increased hepatic insulin receptor and glucose transporter-1 levels and improved glucose tolerance in C57BL/6 mice and in a mouse model of type-2 diabetes, the ob/ob (leptin(-/-)). The results clearly indicate that the novel multifunctional drugs, especially M30, display significant capacity of chelating intracellular iron and regulating glucose metabolism parameters. Such effects can have therapeutic significance in conditions with abnormal local or systemic iron metabolism, including neurological diseases.


Assuntos
Glucose/metabolismo , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Benzofuranos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Compostos Férricos/farmacologia , Ferritinas/metabolismo , Teste de Tolerância a Glucose , Humanos , Hidroxiquinolinas/química , Hidroxiquinolinas/farmacologia , Quelantes de Ferro/química , Leptina/deficiência , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Fármacos Neuroprotetores/química , Piperazinas/química , Piperazinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Quinolinas
12.
Elife ; 122023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561022

RESUMO

Postmenopausal atherosclerosis (AS) has been attributed to estrogen deficiency. However, the beneficial effect of hormone replacement therapy (HRT) is lost in late postmenopausal women with atherogenesis. We asked whether aging-related iron accumulation affects estrogen receptor α (ERα) expression, thus explaining HRT inefficacy. A negative correlation has been observed between aging-related systemic iron deposition and ERα expression in postmenopausal AS patients. In an ovariectomized Apoe-/- mouse model, estradiol treatment had contrasting effects on ERα expression in early versus late postmenopausal mice. ERα expression was inhibited by iron treatment in cell culture and iron-overloaded mice. Combined treatment with estradiol and iron further decreased ERα expression, and the latter effect was mediated by iron-regulated E3 ligase Mdm2. In line with these observations, cellular cholesterol efflux was reduced, and endothelial homeostasis was disrupted. Consequently, AS was aggravated. Accordingly, systemic iron chelation attenuated estradiol-triggered progressive AS in late postmenopausal mice. Thus, iron and estradiol together downregulate ERα through Mdm2-mediated proteolysis, providing a potential explanation for failures of HRT in late postmenopausal subjects with aging-related iron accumulation. This study suggests that immediate HRT after menopause, along with appropriate iron chelation, might provide benefits from AS.


Assuntos
Aterosclerose , Receptor alfa de Estrogênio , Humanos , Feminino , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Pós-Menopausa , Terapia de Reposição de Estrogênios , Aterosclerose/metabolismo , Estradiol , Terapia de Reposição Hormonal , Quelantes de Ferro
13.
Am J Physiol Endocrinol Metab ; 302(12): E1519-30, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22496346

RESUMO

The universal importance of iron, its high toxicity, and complex chemistry present a challenge to biological systems in general and to protected compartments in particular. The high mitotic rate and avid mitochondriogenesis of developing male germ cells imply high iron requirements. Yet access to germ cells is tightly regulated by the blood-testis barrier that protects the meiotic and postmeiotic germ cells. To elucidate how iron is supplied to developing male germ cells, we analyzed iron deposition and iron transport proteins in testes of mice with iron overload and with genetic ablation of the iron regulators Hfe and iron regulatory protein 2. Iron accumulated mainly around seminiferous tubules, and only small amounts localized within the seminiferous tubules. The localization and regulation of proteins involved in iron import, storage, and export such as transferrin, transferrin receptor, the divalent metal transporter-1, cytosolic ferritin, and ferroportin strongly support a model of a largely autonomous iron cycle within seminiferous tubules. We show evidence that ferritin secretion from Sertoli cells may play an important role in iron acquisition of primary spermatocytes. During spermatogenic development iron is carried along from primary spermatocytes to spermatids, and from spermatids iron is recycled to the apical compartment of Sertoli cells, which traffic it back to a new generation of spermatocytes. Losses are replenished by the peripheral circulation. Such an internal iron cycle essentially detaches the iron homeostasis within the seminiferous tubule from the periphery and protects developing germ cells from iron fluctuations. This model explains how compartmentalization can optimize cellular and systemic nutrient homeostasis.


Assuntos
Células Germinativas/metabolismo , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Ferritinas/metabolismo , Imunofluorescência , Células Germinativas/efeitos dos fármacos , Proteína da Hemocromatose , Hepcidinas , Antígenos de Histocompatibilidade Classe I/genética , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Sobrecarga de Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Mutação/fisiologia , Receptores da Transferrina/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo
14.
Blood ; 116(9): 1574-84, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20472835

RESUMO

The serum ferritin concentration is a clinical parameter measured widely for the differential diagnosis of anemia. Its levels increase with elevations of tissue iron stores and with inflammation, but studies on cellular sources of serum ferritin as well as its subunit composition, degree of iron loading and glycosylation have given rise to conflicting results. To gain further understanding of serum ferritin, we have used traditional and modern methodologies to characterize mouse serum ferritin. We find that both splenic macrophages and proximal tubule cells of the kidney are possible cellular sources for serum ferritin and that serum ferritin is secreted by cells rather than being the product of a cytosolic leak from damaged cells. Mouse serum ferritin is composed mostly of L-subunits, whereas it contains few H-subunits and iron content is low. L-subunits of serum ferritin are frequently truncated at the C-terminus, giving rise to a characteristic 17-kD band that has been previously observed in lysosomal ferritin. Taken together with the fact that mouse serum ferritin is not detectably glycosylated, we propose that mouse serum ferritin is secreted through the nonclassical lysosomal secretory pathway.


Assuntos
Ferritinas/sangue , Ferro/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Via Secretória , Sequência de Aminoácidos , Animais , Ensaio de Imunoadsorção Enzimática , Glicosilação , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Subunidades Proteicas , Homologia de Sequência de Aminoácidos
15.
Haematologica ; 97(10): 1489-93, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22419571

RESUMO

Heme-oxygenase 1 is an endoplasmic reticulum-anchored enzyme that breaks down heme into iron, carbon monoxide and biliverdin. Heme is a hydrophobic co-factor in many proteins, including hemoglobin. Free heme is highly cytotoxic and, therefore, both heme synthesis and breakdown are tightly regulated. During turnover of heme proteins, heme is released in the phago-lysosomal compartment or the cytosol. The subcellular location of the heme-oxygenase 1 active site has not been clarified. Using constructs of heme-oxygenase 1 with fluorescent proteins, and the endogenous heme-oxygenase 1 in two variations of protease protection assays, we determined that heme-oxygenase 1 is membrane-bound and faces the cytosol in non-activated macrophages in vivo. These findings imply that in quiescent macrophages, heme breakdown products are generated in the cytosol. This facilitates iron recycling to ferroportin for iron export and to ferritin for iron storage.


Assuntos
Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Heme Oxigenase-1/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Heme/metabolismo , Camundongos , Transporte Proteico
16.
Haematologica ; 97(7): 994-1002, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22331264

RESUMO

BACKGROUND: The lifespan of red blood cells is terminated when macrophages remove senescent red blood cells by erythrophagocytosis. This puts macrophages at the center of systemic iron recycling in addition to their functions in tissue remodeling and innate immunity. Thus far, erythrophagocytosis has been studied by evaluating phagocytosis of erythrocytes that were damaged to mimic senescence. These studies have demonstrated that acquisition of some specific individual senescence markers can trigger erythrophagocytosis by macrophages, but we hypothesized that the mechanism of erythrophagocytosis of such damaged erythrocytes might differ from erythrophagocytosis of physiologically aged erythrocytes. DESIGN AND METHODS: To test this hypothesis we generated an erythrocyte population highly enriched in senescent erythrocytes by a hypertransfusion procedure in mice. Various erythrocyte-aging signals were analyzed and erythrophagocytosis was evaluated in vivo and in vitro. RESULTS: The large cohort of senescent erythrocytes from hypertransfused mice carried numerous aging signals identical to those of senescent erythrocytes from control mice. Phagocytosis of fluorescently-labeled erythrocytes from hypertransfused mice injected into untreated mice was much higher than phagocytosis of labeled erythrocytes from control mice. However, neither erythrocytes from hypertransfused mice, nor those from control mice were phagocytosed in vitro by primary macrophage cultures, even though these cultures were able to phagocytose oxidatively damaged erythrocytes. CONCLUSIONS: The large senescent erythrocyte population found in hypertransfused mice mimics physiologically aged erythrocytes. For effective erythrophagocytosis of these senescent erythrocytes, macrophages depend on some features of the intact phagocytosing tissue for support.


Assuntos
Envelhecimento Eritrocítico/fisiologia , Eritrócitos/fisiologia , Macrófagos/fisiologia , Fagocitose/fisiologia , Animais , Biomarcadores/análise , Biotinilação , Transfusão de Eritrócitos , Eritrócitos/citologia , Eritropoese/fisiologia , Feminino , Citometria de Fluxo , Humanos , Ferro/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo
17.
Biometals ; 25(5): 883-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22580926

RESUMO

The composition of the gut microbiota is affected by environmental factors as well as host genetics. Iron is one of the important elements essential for bacterial growth, thus we hypothesized that changes in host iron homeostasis, may affect the luminal iron content of the gut and thereby the composition of intestinal bacteria. The iron regulatory protein 2 (Irp2) and one of the genes mutated in hereditary hemochromatosis Hfe , are both proteins involved in the regulation of systemic iron homeostasis. To test our hypothesis, fecal metal content and a selected spectrum of the fecal microbiota were analyzed from Hfe-/-, Irp2-/- and their wild type control mice. Elevated levels of iron as well as other minerals in feces of Irp2-/- mice compared to wild type and Hfe-/- mice were observed. Interestingly significant variation in the general fecal-bacterial population-patterns was observed between Irp2-/- and Hfe-/- mice. Furthermore the relative abundance of five species, mainly lactic acid bacteria, was significantly different among the mouse lines. Lactobacillus (L.) murinus and L. intestinalis were highly abundant in Irp2-/- mice, Enterococcus faecium species cluster and a species most similar to Olsenella were highly abundant in Hfe-/- mice and L. johnsonii was highly abundant in the wild type mice. These results suggest that deletion of iron metabolism genes in the mouse host affects the composition of its intestinal bacteria. Further studying the relationship between gut microbiota and genetic mutations affecting systemic iron metabolism in human should lead to clinical implications.


Assuntos
Sistema Digestório/metabolismo , Sistema Digestório/microbiologia , Ferro/metabolismo , Metagenoma , Animais , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Fezes/química , Fezes/microbiologia , Hemocromatose/genética , Hemocromatose/metabolismo , Hemocromatose/microbiologia , Proteína da Hemocromatose , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Homeostase , Humanos , Proteína 2 Reguladora do Ferro/deficiência , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Minerais/metabolismo
18.
J Neural Transm (Vienna) ; 118(3): 337-47, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21298454

RESUMO

Ferritin is known as a well-conserved iron detoxification and storage protein that is found in the cytosol of many prokaryotic and eukaryotic organisms. In insects and worms, ferritin has evolved into a classically secreted protein that transports iron systemically. Mammalian ferritins are found intracellularly in the cytosol, as well as in the nucleus, the endo-lysosomal compartment and the mitochondria. Extracellular ferritin is found in fluids such as serum and synovial and cerebrospinal fluids. We recently characterized the biophysical properties, secretion mechanism and cellular origin of mouse serum ferritin, which is actively secreted by a non-classical pathway involving lysosomal processing. Here, we review the data to support a hypothesis that intracellular and extracellular ferritin may play a role in intra- and intercellular redistribution of iron.


Assuntos
Ferritinas/metabolismo , Ferro/metabolismo , Animais , Transporte Biológico/fisiologia , Lisossomos/metabolismo , Camundongos
19.
Food Funct ; 10(3): 1763-1766, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30794278

RESUMO

This commentary re-emphasizes the aim of our recent review (David et al., 2018) and addresses some of the points raised in the adjacent commentary by M. Weiner and J. McKim, Food Funct., 2019, 10, DOI: 10.1039/C8FO01282B. In agreement with the commentary, the discussed review highlights the need to adequately understand the complex physicochemistry of the food additive carrageenan (CGN) and its fate in the alimentary canal. In fact, there is a realm of scientific findings that justify the continuation of an open discussion of CGN safety. This response emphasizes that there is sparse information on [i] the physicochemical properties of commercial CGN, [ii] human levels of exposure to CGN from foods, [iii] the role of CGN in gut microbiome dysbiosis and inflammation, and [iv] the effects of CGN on susceptible populations. As long as the determinants of the increased prevalence of chronic and autoimmune diseases are not identified, we must continue to explore the possible beneficial or deleterious effects that may arise from extrinsic factors, including food additives, and do so in meticulous independent studies.


Assuntos
Carragenina/efeitos adversos , Carragenina/química , Aditivos Alimentares/efeitos adversos , Aditivos Alimentares/química , Carragenina/metabolismo , Digestão , Aditivos Alimentares/metabolismo , Análise de Alimentos , Humanos
20.
Elife ; 82019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31793879

RESUMO

Lysosomal acidification is a key feature of healthy cells. Inability to maintain lysosomal acidic pH is associated with aging and neurodegenerative diseases. However, the mechanisms elicited by impaired lysosomal acidification remain poorly understood. We show here that inhibition of lysosomal acidification triggers cellular iron deficiency, which results in impaired mitochondrial function and non-apoptotic cell death. These effects are recovered by supplying iron via a lysosome-independent pathway. Notably, iron deficiency is sufficient to trigger inflammatory signaling in cultured primary neurons. Using a mouse model of impaired lysosomal acidification, we observed a robust iron deficiency response in the brain, verified by in vivo magnetic resonance imaging. Furthermore, the brains of these mice present a pervasive inflammatory signature associated with instability of mitochondrial DNA (mtDNA), both corrected by supplementation of the mice diet with iron. Our results highlight a novel mechanism linking impaired lysosomal acidification, mitochondrial malfunction and inflammation in vivo.


Assuntos
Ácidos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Deficiências de Ferro , Lisossomos/metabolismo , Animais , Apoptose , Encéfalo/metabolismo , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células , DNA Mitocondrial/genética , Modelos Animais de Doenças , Transporte de Elétrons , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata , Inflamação/genética , Ferro/farmacologia , Lisossomos/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Biogênese de Organelas , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , alfa-Glucosidases/deficiência , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA