Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 52(11): 1768-1775, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106692

RESUMO

SARS-CoV-2 is a newly emerged coronavirus, causing the global pandemic of respiratory coronavirus disease (COVID-19). The type I interferon (IFN) pathway is of particular importance for anti-viral defense and recent studies identified that type I IFNs drive early inflammatory responses to SARS-CoV-2. Here, we use a mouse model of SARS-CoV-2 infection, facilitating viral entry by intranasal recombinant Adeno-Associated Virus (rAAV) transduction of hACE2 in wildtype (WT) and type I IFN receptor-1 deficient (Ifnar1-/- ) mice, to study the role of type I IFN signalling and innate immune responses during SARS-CoV-2 infection. Our data show that type I IFN signalling is essential for inducing anti-viral effector responses to SARS-CoV-2, control of virus replication, and to prevent enhanced disease. Furthermore, hACE2-Ifnar1-/- mice had increased gene expression of the chemokine Cxcl1 and airway infiltration of neutrophils as well as reduced and delayed production of monocyte-recruiting chemokine CCL2. hACE2-Ifnar1-/- mice showed altered recruitment of inflammatory myeloid cells to the lung upon SARS-CoV-2 infection, with a shift from Ly6C+ to Ly6C- expressing cells. Together, our findings suggest that type I IFN signalling deficiency results in a dysregulated innate immune response to SARS-CoV-2 infection.


Assuntos
COVID-19 , Imunidade Inata , Receptor de Interferon alfa e beta , Animais , Camundongos , COVID-19/imunologia , Interferon Tipo I , Pandemias , Receptor de Interferon alfa e beta/genética , SARS-CoV-2
2.
Thorax ; 77(12): 1229-1236, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35165144

RESUMO

BACKGROUND: The COVID-19 pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines. AIMS: We hypothesised that passive immunity engineered by the in vivo expression of anti-SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all populations irrespective of their immune status or age. METHODS: We developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to allow in vivo assessment of SARS-CoV-2 infection, (ii) to simplify in vivo challenge studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory containment conditions and (iii) we developed in vivo gene transfer vectors to express anti-SARS-CoV-2 mAbs. CONCLUSIONS: A single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-CoV-2 mAbs could enhance protection and prevent rapid mutational escape.


Assuntos
COVID-19 , Humanos , Camundongos , Animais , Idoso , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Pandemias/prevenção & controle , Anticorpos Antivirais , Pulmão , Anticorpos Neutralizantes
3.
Front Immunol ; 13: 819058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529866

RESUMO

Vaccines for COVID-19 are now a crucial public health need, but the degree of protection provided by conventional vaccinations for individuals with compromised immune systems is unclear. The use of viral vectors to express neutralizing monoclonal antibodies (mAbs) in the lung is an alternative approach that does not wholly depend on individuals having intact immune systems and responses. Here, we identified an anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibody, NC0321, which can efficiently neutralize a range of SARS-CoV-2 variants, including alpha, beta, delta, and eta. Both prophylactic and therapeutic NC0321 treatments effectively protected mice from SARS-CoV-2 infection. Notably, we adopted viral vector-mediated delivery of NC0321 IgG1 as an attractive approach to prevent SARS-CoV-2 infection. The NC0321 IgG1 expression in the proximal airway, expressed by a single direct in-vivo intranasal (I.N.) administration of a self-inactivating and recombinant lentiviral vector (rSIV.F/HN-NC0321), can protect young, elderly, and immunocompromised mice against mouse-adapted SARS-CoV-2 surrogate challenge. Long-term monitoring indicated that rSIV.F/HN-NC0321 mediated robust IgG expression throughout the airway of young and SCID mice, importantly, no statistical difference in the NC0321 expression between young and SCID mice was observed. A single I.N. dose of rSIV.F/HN-NC0321 30 or 180 days prior to SARS-CoV-2 challenge significantly reduced lung SARS-CoV-2 titers in an Ad5-hACE2-transduced mouse model, reconfirming that this vectored immunoprophylaxis strategy could be useful, especially for those individuals who cannot gain effective immunity from existing vaccines, and could potentially prevent clinical sequelae.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Camundongos , Camundongos SCID , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
4.
Hum Gene Ther ; 33(17-18): 893-912, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074947

RESUMO

The prospect of gene therapy for inherited and acquired respiratory disease has energized the research community since the 1980s, with cystic fibrosis, as a monogenic disorder, driving early efforts to develop effective strategies. The fact that there are still no approved gene therapy products for the lung, despite many early phase clinical trials, illustrates the scale of the challenge: In the 1990s, first-generation non-viral and viral vector systems demonstrated proof-of-concept but low efficacy. Since then, there has been steady progress toward improved vectors with the capacity to overcome at least some of the formidable barriers presented by the lung. In addition, the inclusion of features such as codon optimization and promoters providing long-term expression have improved the expression characteristics of therapeutic transgenes. Early approaches were based on gene addition, where a new DNA copy of a gene is introduced to complement a genetic mutation: however, the advent of RNA-based products that can directly express a therapeutic protein or manipulate gene expression, together with the expanding range of tools for gene editing, has stimulated the development of alternative approaches. This review discusses the range of vector systems being evaluated for lung delivery; the variety of cargoes they deliver, including DNA, antisense oligonucleotides, messenger RNA (mRNA), small interfering RNA (siRNA), and peptide nucleic acids; and exemplifies progress in selected respiratory disease indications.


Assuntos
Ácidos Nucleicos Peptídicos , DNA , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Oligonucleotídeos Antissenso , RNA Mensageiro , RNA Interferente Pequeno/genética
5.
Expert Rev Respir Med ; 13(8): 709-725, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31215818

RESUMO

Introduction: Cystic fibrosis (CF) remains a life-threatening genetic disease, with few clinically effective treatment options. Gene therapy and gene editing strategies offer the potential for a one-time CF cure, irrespective of the CFTR mutation class. Areas covered: We review emerging gene therapies and gene delivery strategies for the treatment of CF particularly viral and non-viral approaches with potential to treat CF. Expert opinion: It was initially anticipated that the challenge of developing a gene therapy for CF lung disease would be met relatively easily. Following early proof-of-concept clinical studies, CF gene therapy has entered a new era with innovative vector designs, approaches to subvert the humoral immune system and increase gene delivery and gene correction efficiencies. Developments include integrating adenoviral vectors, rapamycin-loaded nanoparticles, and lung-tropic lentiviral vectors. The characterization of novel cell types in the lung epithelium, including pulmonary ionocytes, may also encourage cell type-specific targeting for CF correction. We anticipate preclinical studies to further validate these strategies, which should pave the way for clinical trials. We also expect gene editing efficiencies to improve to clinically translatable levels, given advancements in viral and non-viral vectors. Overall, gene delivery technologies look more convincing in producing an effective CF gene therapy.


Assuntos
Fibrose Cística/terapia , Terapia Genética , Animais , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Edição de Genes , Vetores Genéticos , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA