Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(11): e202109941, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985780

RESUMO

Bond exchange in a typical dynamic covalent polymer network allows access to macroscopic shape reconfigurability, but the network architecture is not altered. An alternative possibility is that the network architecture can be designed to switch to various topological states corresponding to different material properties. Achieving both in one network can expand the material scope, but their intrinsically conflicting mechanisms make it challenging. We design a dynamic covalent network that can undergo two orthogonal topological transformations, namely transesterification on the branched chains and olefin metathesis on the mainframe. This allows independent control of the macroscopic shape and molecular architecture. With this design, we illustrate a bottlebrush network with programmable shape and spatially definable mechanical properties. Our strategy paves a way to on-demand regulation of network polymers.

2.
Adv Mater ; 34(50): e2206393, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36189869

RESUMO

Dielectric elastomers (DEs) can demonstrate fast and large in-plane expansion/contraction due to electric field (e-field)-induced Maxwell stress. For robotic applications, it is often necessary that the in-plane actuation is converted into out-of-plane motions with mechanical frames. Despite their performance appeal, their high driving e-field (20-100 V µm-1 ) demands bulky power accessories and severely compromises their durability. Here, a dielectric polymer that can be programmed into diverse motions actuated under a low e-field (2-10 V µm-1 ) is reported. The material is a crystalline dynamic covalent network that can be reconfigured into arbitrary 3D geometries. This gives rise to a geometric effect that markedly amplifies the actuation, leading to designable large motions when the dielectric polymer is heated above its melting temperature to become a DE. Additionally, the crystallization transition enables dynamic multimodal motions and active deployability. These attributes result in unique design versatility for soft robots.

3.
Nat Commun ; 11(1): 4257, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848146

RESUMO

The ability to undergo bond exchange in a dynamic covalent polymer network has brought many benefits not offered by classical thermoplastic and thermoset polymers. Despite the bond exchangeability, the overall network topologies for existing dynamic networks typically cannot be altered, limiting their potential expansion into unexplored territories. By harnessing topological defects inherent in any real polymer network, we show herein a general design that allows a dynamic network to undergo rearrangement to distinctive topologies. The use of a light triggered catalyst further allows spatio-temporal regulation of the network topology, leading to an unusual opportunity to program polymer properties. Applying this strategy to functional shape memory networks yields custom designable multi-shape and reversible shape memory characteristics. This molecular principle expands the design versatility for network polymers, with broad implications in many other areas including soft robotics, flexible electronics, and medical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA