Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 531(7592): 105-9, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26863197

RESUMO

The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.


Assuntos
Linhagem da Célula , Terapia Baseada em Transplante de Células e Tecidos , Descoberta de Drogas/métodos , Sistema Nervoso Entérico/patologia , Doença de Hirschsprung/tratamento farmacológico , Doença de Hirschsprung/patologia , Neurônios/patologia , Envelhecimento , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular , Separação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Embrião de Galinha , Colo/efeitos dos fármacos , Colo/patologia , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Doença de Hirschsprung/terapia , Humanos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Pepstatinas/metabolismo , Células-Tronco Pluripotentes/patologia , Receptor de Endotelina B/metabolismo , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 106(31): 12759-64, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19549847

RESUMO

Human-induced pluripotent stem cells (hiPSCs) are generated from somatic cells by ectopic expression of the 4 reprogramming factors (RFs) Oct-4, Sox2, Klf4, and c-Myc. To better define the stoichiometric requirements and dynamic expression patterns required for successful hiPSC induction, we generated 4 bicistronic lentiviral vectors encoding the 4 RFs co-expressed with discernable fluorescent proteins. Using this system, we define the optimal stoichiometry of RF expression to be highly sensitive to Oct4 dosage, and we demonstrate the impact that variations in the relative ratios of RF expression exert on the efficiency of hiPSC induction. Monitoring of expression of each individual RF in single cells during the course of reprogramming revealed that vector silencing follows acquisition of pluripotent cell markers. Pronounced lentiviral vector silencing was a characteristic of successfully reprogrammed hiPSC clones, but lack of complete silencing did not hinder hiPSC induction, maintenance, or directed differentiation. The vector system described here presents a powerful tool for mechanistic studies of reprogramming and the optimization of hiPSC generation.


Assuntos
Genes myc/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Fator 3 de Transcrição de Octâmero/fisiologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição SOXB1/fisiologia , Diferenciação Celular , Epigênese Genética , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética
3.
J Vis Exp ; (109): e53806, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26967464

RESUMO

Human pluripotent stem cells (hPSCs) represent a platform to study human development in vitro under both normal and disease conditions. Researchers can direct the differentiation of hPSCs into the cell type of interest by manipulating the culture conditions to recapitulate signals seen during development. One such cell type is the melanocyte, a pigment-producing cell of neural crest (NC) origin responsible for protecting the skin against UV irradiation. This protocol presents an extension of a currently available in vitro Neural Crest differentiation protocol from hPSCs to further differentiate NC into fully pigmented melanocytes. Melanocyte precursors can be enriched from the Neural Crest protocol via a timed exposure to activators of WNT, BMP, and EDN3 signaling under dual-SMAD-inhibition conditions. The resultant melanocyte precursors are then purified and matured into fully pigmented melanocytes by culture in a selective medium. The resultant melanocytes are fully pigmented and stain appropriately for proteins characteristic of mature melanocytes.


Assuntos
Técnicas de Cultura de Células , Crista Neural/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/fisiologia , Separação Celular/métodos , Citometria de Fluxo/métodos , Humanos
4.
Methods Mol Biol ; 1307: 329-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24301074

RESUMO

The neural crest (NC) is a transient population of multipotent cells giving rise to the peripheral nervous system, skin pigmentation, heart, and facial mesenchyme. The broad cell fate potential of NC makes it an attractive cell fate to derive from human pluripotent stem cells (hPSCs) for exploring embryonic development, modeling disease, and generating cells for transplantation. Here, we discuss recent publications and methods for efficiently differentiating hPSCs into NC. We also provide methods to direct NC into two different terminal fates: melanocytes and sensory neurons.


Assuntos
Técnicas de Cultura de Células/métodos , Crista Neural/citologia , Células-Tronco Pluripotentes/citologia , Proteínas Smad/antagonistas & inibidores , Proteínas Wnt/metabolismo , Animais , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Melanócitos/citologia , Camundongos , Células-Tronco Pluripotentes/metabolismo , Células Receptoras Sensoriais/citologia , Proteínas Smad/metabolismo
5.
Cell Rep ; 3(4): 1140-52, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23583175

RESUMO

Melanocytes are pigment-producing cells of neural crest (NC) origin that are responsible for protecting the skin against UV irradiation. Pluripotent stem cell (PSC) technology offers a promising approach for studying human melanocyte development and disease. Here, we report that timed exposure to activators of WNT, BMP, and EDN3 signaling triggers the sequential induction of NC and melanocyte precursor fates under dual-SMAD-inhibition conditions. Using a SOX10::GFP human embryonic stem cell (hESC) reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human NC induction. Subsequent maturation of hESC-derived melanocytes yields pure populations that match the molecular and functional properties of adult melanocytes. Melanocytes from Hermansky-Pudlak syndrome and Chediak-Higashi syndrome patient-specific induced PSCs (iPSCs) faithfully reproduce the ultrastructural features of disease-associated pigmentation defects. Our data define a highly specific requirement for WNT signaling during NC induction and enable the generation of pure populations of human iPSC-derived melanocytes for faithful modeling of pigmentation disorders.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Melanócitos/citologia , Modelos Biológicos , Crista Neural/citologia , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Linhagem da Célula , Síndrome de Chediak-Higashi/metabolismo , Síndrome de Chediak-Higashi/patologia , Células-Tronco Embrionárias/metabolismo , Endotelina-3/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Melanócitos/metabolismo , Crista Neural/metabolismo , Pigmentação , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo
6.
Nat Biotechnol ; 30(7): 715-20, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22750882

RESUMO

Considerable progress has been made in identifying signaling pathways that direct the differentiation of human pluripotent stem cells (hPSCs) into specialized cell types, including neurons. However, differentiation of hPSCs with extrinsic factors is a slow, step-wise process, mimicking the protracted timing of human development. Using a small-molecule screen, we identified a combination of five small-molecule pathway inhibitors that yield hPSC-derived neurons at >75% efficiency within 10 d of differentiation. The resulting neurons express canonical markers and functional properties of human nociceptors, including tetrodotoxin (TTX)-resistant, SCN10A-dependent sodium currents and response to nociceptive stimuli such as ATP and capsaicin. Neuronal fate acquisition occurs about threefold faster than during in vivo development, suggesting that use of small-molecule pathway inhibitors could become a general strategy for accelerating developmental timing in vitro. The quick and high-efficiency derivation of nociceptors offers unprecedented access to this medically relevant cell type for studies of human pain.


Assuntos
Diferenciação Celular , Nociceptores , Células-Tronco Pluripotentes , Bibliotecas de Moléculas Pequenas , Acetanilidas/farmacologia , Ácidos Cafeicos/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Nociceptores/citologia , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tetrodotoxina/farmacologia
7.
Methods Mol Biol ; 793: 87-97, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21913095

RESUMO

Human embryonic stem cells (hESCs) and the related induced pluripotent stem cells (hiPSCs) have attracted considerable attention since they can provide an unlimited source of many different tissue types. One challenge of using pluripotent cells is directing their broad differentiation potential into one specific tissue or cell fate. The cell fate choices of extraembryonic, endoderm, mesoderm, and ectoderm (including neural) lineages represent the earliest decisions. We found that pluripotent cells efficiently neuralize by blocking the signaling pathways required for alternative cell fate decisions. In this chapter, we detail methods to direct hESCs or hiPSCs into early neural cells and subsequently postmitotic neurons.


Assuntos
Diferenciação Celular , Técnicas Citológicas/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Animais , Linhagem Celular , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA