RESUMO
Given the growing world population, there is a need to balance animal and vegetable sources of dietary protein and to limit overall protein resources, and food formulation has to consider alternative protein sources as a way to meet human requirements. The protein concentration, essential amino acids (EAA) of all protein sources were analyzed with respect to human needs along with additional macronutrients of nutritional and energy interest (i.e. carbohydrates and lipids). New indexes are proposed to classify the alternative protein sources considering their EAA balance and how it may change during food processing. A global overview of all protein sources is provided including the quantity of food and associated caloric intakes required to fulfill our daily protein needs. As texture is a key parameter in food formulation, and is often influenced by protein gelation, we conducted an exhaustive review of the literature in a large scientific database on the ability of proteins from all sources to go through the sol-gel transition with the corresponding physical-chemical conditions. Traditional and innovative recipes are discussed and some improvement are proposed in terms of their ability to fulfill human needs for EAA and food and caloric intakes.
Assuntos
Proteínas Alimentares , Ingestão de Energia , Animais , Humanos , Proteínas Alimentares/metabolismo , Nutrientes , VerdurasRESUMO
Ferulated polysaccharides such as pectin and arabinoxylan form covalent gels which are attractive for drug delivery or cell immobilization. Saccharomyces boulardii is a probiotic yeast known for providing humans with health benefits; however, its application is limited by viability loss under environmental stress. In this study, ferulated pectin from sugar beet solid waste (SBWP) and ferulated arabinoxylan from maize bioethanol waste (AX) were used to form a covalent mixed gel, which was in turn used to entrap S. boulardii (2.08 × 108 cells/mL) in microbeads using electrospray. SBWP presented a low degree of esterification (30%), which allowed gelation through Ca2+, making it possible to reduce microbead aggregation and coalescence by curing the particles in a 2% CaCl2 cross-linking solution. SBWP/AX and SBWP/AX+ S. boulardii microbeads presented a diameter of 214 and 344 µm, respectively, and a covalent cross-linking content (dimers di-FA and trimer tri-FA of ferulic acid) of 1.15 mg/g polysaccharide. The 8-5', 8-O-4'and 5-5'di-FA isomers proportions were 79%, 18%, and 3%, respectively. Confocal laser scanning microscopy images of propidium iodide-stained yeasts confirmed cell viability before and after microbeads preparation by electrospray. SBWP/AX capability to entrap S. boulardii would represent an alternative for probiotic immobilization in tailored biomaterials and an opportunity for sustainable waste upcycling to value-added products.
Assuntos
Pectinas/química , Saccharomyces boulardii/isolamento & purificação , Xilanos/química , Portadores de Fármacos/química , Lacase/metabolismoRESUMO
This study aimed to evaluate the nutritional value of pasta enriched with legume or wheat gluten proteins and dried at varying temperature. A total of four isonitrogenous experimental diets were produced using gluten powder/wheat semolina (6/94, g/g) pasta and faba bean flour/wheat semolina (35/65, g/g) pasta dried at either 55°C (GLT and FLT, respectively) or 90°C (FVHT and GVHT, respectively). Experimental diets were fed to ten 1-month-old Wistar rats (body weight=176 (sem 15) g) for 21 d. Growth and nutritional, metabolic and inflammatory markers were measured and compared with an isonitrogenous casein diet (CD). The enrichment with faba bean increased the lysine, threonine and branched amino acids by 97, 23 and 10 %, respectively. Protein utilisation also increased by 75 % (P<0·01) in FLT in comparison to GLT diet, without any effect on the corrected faecal digestibility (P>0·05). Faba bean pasta diets' corrected protein digestibility and utilisation was only 3·5 and 9 %, respectively, lower than the CD. Growth rate, blood composition and muscle weights were not generally different with faba bean pasta diets compared with CD. Corrected protein digestibility was 3 % lower in GVHT than GLT, which may be associated with greater carboxymethyllysine. This study in growing rats clearly indicates improvement in growth performance of rats fed legume-enriched pasta diet compared with rats fed gluten-wheat pasta diet, regardless of pasta drying temperature. This means faba bean flour can be used to improve the protein quality and quantity of pasta.
RESUMO
BACKGROUND: Dietary guidelines are designed to help meet nutritional requirements, but they do not explicitly or quantitatively account for food contaminant exposures. OBJECTIVE: In this study, we aimed to test whether dietary changes needed to achieve nutritional adequacy were compatible with acceptable exposure to food contaminants. METHODS: Data from the French national dietary survey were linked with food contaminant data from the French Total Diet Study to estimate the mean intake of 204 representative food items and mean exposure to 27 contaminants, including pesticides, heavy metals, mycotoxins, nondioxin-like polychlorinated biphenyls (NDL-PCBs) and dioxin-like compounds. For each sex, 2 modeled diets that departed the least from the observed diet were designed: 1) a diet respecting only nutritional recommendations (NUT model), and 2) a diet that met nutritional recommendations without exceeding Toxicological Reference Values (TRVs) and observed contaminant exposures (NUTOX model). Food, nutrient, and contaminant contents in observed diets and NUT and NUTOX diets were compared with the use of paired t tests. RESULTS: Mean observed diets did not meet all nutritional recommendations, but no contaminant was over 48% of its TRV. Achieving all the nutrient recommendations through the NUT model mainly required increases in fruit, vegetable, and fish intake and decreases in meat, cheese, and animal fat intake. These changes were associated with significantly increased dietary exposure to some contaminants, but without exceeding 57% of TRVs. The highest increases were found for NDL-PCBs (from 26% to 57% of TRV for women). Reaching nutritional adequacy without exceeding observed contaminant exposure (NUTOX model) was possible but required further departure from observed food quantities. CONCLUSIONS: Based on a broad range of nutrients and contaminants, this first assessment of compatibility between nutritional adequacy and toxicological exposure showed that reaching nutritional adequacy might increase exposure to food contaminants, but within tolerable levels. However, there are some food combinations that can meet nutritional recommendations without exceeding observed exposures.
Assuntos
Dieta , Contaminação de Alimentos/análise , Modelos Teóricos , Animais , Ingestão de Energia , Estudos de Viabilidade , Feminino , Peixes , Análise de Alimentos , Qualidade dos Alimentos , Frutas , Limite de Detecção , Masculino , Carne/análise , Metais Pesados/análise , Micotoxinas/análise , Necessidades Nutricionais , Praguicidas/análise , Bifenilos Policlorados/análise , Sensibilidade e Especificidade , VerdurasRESUMO
This research aimed to evaluate the gelation process of ferulated pectin (FP) and ferulated arabinoxylan (AXF) in a new mixed hydrogel and determine its microstructural characteristics. FP from sugar beet (Beta vulgaris) and arabinoxylan from maize (Zea mays) bran were gelled via oxidative coupling using laccase as a crosslinking agent. The dynamic oscillatory rheology of the mixed hydrogel revealed a maximum storage modulus of 768 Pa after 60 min. The scanning electron microscopy images showed that mixed hydrogels possess a microstructure of imperfect honeycomb. The ferulic acid content of the mixed hydrogel was 3.73 mg/g, and ferulic acid dimer 8-5' was the most abundant. The presence of a trimer was also detected. This study reports the distribution and concentration of ferulic acid dimers, and the rheological and microstructural properties of a mixed hydrogel based on FP and AXF, which has promising features as a new covalent biopolymeric material.
RESUMO
Food diversity is a challenging issue for sustainable agrifood systems. Diets are increasingly dependent on branded packaged foods. Therefore, the crop diversity offered in the food market through these products is of particular importance. We scrutinize this diversity for some crops under great societal challenge: pulses. Based on the product launches referenced in the Mintel database over the last decade, we compare the food products containing pulse crops with those containing another legume-soy. From the 350,000 products analyzed, our results show that soy is mainly used but reveal some progress in the use of pulse species, particularly in Europe. The position of the examined species in the list of ingredients and in the product description allows us to assess its importance. The text-mining methods used usefully enable the monitoring of crop usage in the food market. We discuss several perspectives, notably how to deepen these results regarding consumer choices.
RESUMO
Growing demand for sustainable, plant-based protein sources has stimulated interest in new ingredients for food enrichment. This study investigates the nutritional and digestive implications of enriching wheat dough with RuBisCO, in comparison to pea protein-enriched and gluten-enriched doughs. The protein quality and digestibility of these enriched doughs were analysed through dough characterization, in vitro digestion experiments and biochemical analysis of digesta. Our findings indicate that an enrichment at 10% of RuBisCO or pea proteins improves the chemical score and the in vitro PDCAAS (IV-PDCAAS) score of wheat dough as compared to the control dough. Digestibility assays suggest that RuBisCO introduction modifies the protein hydrolysis kinetics: the nitrogen release is lower during gastric digestion but larger during intestinal digestion than other samples. The analysis of the protein composition of the soluble and insoluble parts of digesta, using size-exclusion chromatography, reveals that the protein network in RuBisCO-enriched dough is more resistant to gastric hydrolysis than the ones of other doughs. Indeed, non-covalently bound peptides and disulfide-bound protein aggregates partly composed of RuBisCO subunits remain insoluble at the end of the gastric phase. The digestion of these protein structures is then mostly performed during the intestinal phase. These results are also discussed in relation to the digestive enzymatic cleavage sites, the presence of potential enzyme inhibitors, the protein aggregation state and the secondary structures of the protein network in each dough type.
Assuntos
Digestão , Glutens , Ribulose-Bifosfato Carboxilase , Triticum , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Triticum/química , Triticum/metabolismo , Glutens/metabolismo , Glutens/química , Farinha/análise , Proteínas de Ervilha/química , Proteínas de Ervilha/metabolismo , Pisum sativum/química , Hidrólise , Humanos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/químicaRESUMO
Enhydra fluctuans leaves are traditionally sold on Indian markets for various health benefits. However, no phytochemical study on its high molecular weight compound has so far been performed. Chemical, chromatographic, ESI-TOF-MS, and NMR analyses of the water extracted carbohydrate polymer (CP) of E. fluctuans leaves showed the presence of a 24 kDa arabinogalactan having a (1,3)-linked ß-d-Galp main chain, substituted at O-6 by (1,6)-linked ß-d-Galp side chains. The latter residues were substituted at O-3 by (1,3)-, (1,5)-, and (1,3,5)-linked α-l-Araf chains, and nonreducing end-units of α-l-Araf and ß-d-Galp. This polymer contained esterified phenolic acids. Biochemical analysis revealed similarity in antioxidative potential between the identified carbohydrate polymer and known standard antioxidants. The highly branched side chains and the phenolic acid residues of the arabinogalactan might be the functional sites. Fluorimetric and ultraviolet spectrometric analyses showed that the studied carbohydrate polymer can form complex with bovine serum albumin having binding constant K = 2.42 × 10(6)/M and changes its microenvironment. Thus, traditional aqueous extraction method provides a carbohydrate polymer, which stimulates a fair biological response: this could represent an interesting approach in phytotherapeutic treatments.
Assuntos
Antioxidantes/farmacologia , Asteraceae/química , Carboidratos/química , Polímeros/química , Soroalbumina Bovina/química , Espectroscopia de Ressonância Magnética , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
SCOPE: The purpose of the study is to characterize the chemical diversity in rice bran (RB) lipidome and determines whether daily RB consumption for 4 weeks may modulate plasma lipid profiles in children. METHODS AND RESULTS: Untargeted and targeted lipidomics via ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-MS/MS) are applied to identify bioactive RB lipids from a collection of 17 rice varieties. To determine the impact of RB (Calrose-USA variety) supplementation on plasma lipid profile, a secondary analysis of plasma lipidome is conducted on data recorded in a clinical study (NCT01911390, n = 18 moderately hypercholesterolemic children) before and after 4 weeks of dietary intervention with a control or RB supplemented (15 g day-1 ) snack. Untargeted lipidomic reveals 118 lipids as the core of lipidome across all varieties among which phospholipids are abundant and oxylipins present. Phytoprostanes and phytofurans are quantified and characterized. Lipidome analysis of the children plasma following RB consumption reveals the presence of polar lipids and oxylipins alongside putative modulations in endocannabinoids associated with RB consumption. CONCLUSION: The investigation of novel polar lipids, oxylipins, phytoprostanes, and phytofurans in RB extracts provides support for new health-promoting properties interesting for people at risk for cardiometabolic disease.
Assuntos
Oryza , Fosfolipídeos , Criança , Humanos , Cromatografia Líquida , Glicolipídeos , Metabolismo dos Lipídeos , Lipidômica , Oxilipinas , Fosfolipídeos/análise , Espectrometria de Massas em Tandem/métodosRESUMO
This study provides a detailed characterisation of a leaf protein concentrate (LPC) extracted from Cichorium endivia leaves using a pilot scale process. This concentrate contains 74.1% protein and is mainly composed of Ribulose-1,5-BISphosphate Carboxylase/Oxygenase (RuBisCO). We show that the experimentally determined extinction coefficient (around 5.0 cm-1 g-1 L depending on the pH) and refractive index increment (between 0.27 and 0.39 mL g-1) are higher than the predicted ones (about 1.6 cm-1 g-1 L and 0.19 mL g-1, respectively). In addition, the UV-visible absorption spectra show a maximum at 258 nm. These data suggest the presence of non-protein UV-absorbing species. Chromatographic separation of the concentrate components in denaturing conditions suggests that RuBisCO SC may be covalently bounded to few phenolic compounds. Besides, the solubility of LPC proteins is higher than 90% above pH 6. Such high solubility could make LPC a good candidate as a functional food ingredient.
Assuntos
Folhas de Planta , Ribulose-Bifosfato Carboxilase , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , SolubilidadeRESUMO
Arabinoxylans (AX) microcapsules loaded with insulin were prepared by enzymatic gelation of AX, using a triaxial electrospray method. The microcapsules presented a spherical shape, with an average size of 250 µm. The behavior of AX microcapsules was evaluated using a simulator of the human intestinal microbial ecosystem. AX microcapsules were mainly (70%) degraded in the ascending colon. The fermentation was completed in the descending colon, increasing the production of acetic, propionic, and butyric acids. In the three regions of the colon, the fermentation of AX microcapsules significantly increased populations of Bifidobacterium and Lactobacillus and decreased the population of Enterobacteriaceae. In addition, the results found in this in vitro model showed that the AX microcapsules could resist the simulated conditions of the upper gastrointestinal system and be a carrier for insulin delivery to the colon. The pharmacological activity of insulin-loaded AX microcapsules was evaluated after oral delivery in diabetic rats. AX microcapsules lowered the serum glucose levels in diabetic rats by 75%, with insulin doses of 25 and 50 IU/kg. The hypoglycemic effect and the insulin levels remained for more than 48 h. Oral relative bioavailability was 13 and 8.7% for the 25 and 50 IU/kg doses, respectively. These results indicate that AX microcapsules are a promising microbiota-activated system for oral insulin delivery in the colon.
RESUMO
The oxidative gelation of maize bran arabinoxylans (MBAX) using a peroxidase/H(2)O(2) system as a free radical-generating agent was investigated. The peroxidase/H(2)O(2) system led to the formation of dimers and trimer of ferulic acid as covalent cross-link structures in the MBAX network. MBAX gels at 4% (w/v) presented a storage modulus of 180 Pa. The structural parameters of MBAX gels were calculated from swelling experiments. MBAX gels presented a molecular weight between two cross-links (Mc), a cross-linking density (ρ(c)) and a mesh size (x) of 49 × 103 g/mol, 30 × 10-6 mol/cm3 and 193 nm, respectively.
Assuntos
Radicais Livres/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Xilanos/metabolismo , Zea mays/metabolismo , Ácidos Cumáricos , Géis/química , Oxirredução , Xilanos/química , Xilanos/ultraestrutura , Zea mays/química , Zea mays/ultraestruturaRESUMO
Pasta made exclusively from legume has high nutritional potential (rich in protein and gluten free). However, it is difficult to produce 100% legume dough suitable for the extrusion step in pasta production that comprises hydration, mixing, and extrusion. This paper addresses the biochemical phenomena at the origin of the agglomeration of dough particles frequently reported in the literature, which results in very sticky dough that cannot be extruded. We tested changes in mixing conditions including mixing temperature, addition of antioxidants, and flour pretreatment. Our results suggest that enzymatic reactions, notably lipoxygenase related redox activity, are responsible for this impairment of dough mixing and extrusion. Some of the process conditions studied can be applied at industrial scale and will help produce a legume food with nutritional and culinary qualities, beneficial for people with celiac disease, or gluten intolerance, as well as the general population. PRACTICAL APPLICATION: In the context of a sustainable and healthy food transition, the food industry is developing legume-based food of high nutritional quality that is widely consumed, like pasta. However, using legumes often leads to technological problems during the mixing and extrusion of pasta. This article demonstrates they are linked to enzymatic oxidative phenomena and provides an easy solution to reduce the problems without drastically changing pasta processing. Applied at industrial scale, it will allow the production of naturally gluten-free pasta rich in protein (two to three times the protein content of wheat pasta), of good nutritional quality.
Assuntos
Fabaceae/química , Manipulação de Alimentos , Humanos , Valor Nutritivo , TemperaturaRESUMO
Rice bran (RB) corresponds to the outer layers of whole grain rice and contains several phenolic compounds (PCs) that make it an interesting functional food ingredient. PC richness is enhanced in pigmented RB varieties and requires effective ways of extraction of these compounds. Therefore, we investigated conventional and deep eutectic solvents (DES) extraction methods to recover a wide array of PCs from red and black RB. The RB were extracted with ethanol/water (60:40, v/v) and two DES (choline chloride/1.2-propanediol/water, 1:1:1 and choline chloride/lactic acid, 1:10, mole ratios), based on Generally Recognized as Safe (GRAS) components. Besides the quantification of the most typical phenolic acids of cereals, nontargeted metabolomic approaches were applied to PCs profiling in the extracts. Globally, metabolomics revealed 89 PCs belonging to flavonoids (52%), phenolic acids (33%), other polyphenols (8%), lignans (6%) and stilbenes (1%) classes. All extracts, whatever the solvents, were highly concentrated in the main phenolic acids found in cereals (37-66 mg/100 g in black RB extracts vs. 6-20 mg/100 g in red RB extracts). However, the PC profile was highly dependent on the extraction solvent and specific PCs were extracted using the acidic DES. The PC-enriched DES extracts demonstrated interesting DPPH scavenging activity, which makes them candidates for novel antioxidant formulations.
RESUMO
The aim of this work was to evaluate the impact of incorporating different legume flours (faba bean, lentil or split pea flours) on the pasta protein network and its repercussion on in vitro protein digestibility, in comparison with reference dairy proteins. Kinetics and yields of protein hydrolysis in legume enriched pasta and, for the first time, the peptidomes generated by the pasta at the end of the in vitro gastric and intestinal phases of digestion are presented. Three isoproteic (21%) legume enriched pasta with balanced essential amino acids, were made from wheat semolina and 62% to 79% of legume flours (faba bean or F-pasta; lentil or L-pasta and split pea or P-pasta). Pasta were prepared following the conventional pastification steps (hydration, mixing, extrusion, drying, cooking). Amino acid composition and protein network structure of the pasta were determined along with their culinary and rheological properties and residual trypsin inhibitor activity (3-5% of the activity initially present in raw legume flour). F- and L-pasta had contrasted firmness and proportion of covalently linked proteins. F-pasta had a generally weaker protein network and matrix structure, however far from the weakly linked soluble milk proteins (SMP) and casein proteins, which in addition contained no antitrypsin inhibitors and more theoretical cleavage sites for digestive enzymes. The differences in protein network reticulation between the different pasta and between pasta and dairy proteins were in agreement in each kinetic phase with the yield of the in vitro protein hydrolysis, which reached 84% for SMP, and 66% for casein at the end of intestinal phase, versus 50% for L- and P-pasta and 58% for F-pasta. The peptidome of legume enriched pasta is described for the first time and compared with the peptidome of dairy proteins for each phase of digestion. The gastric and intestinal phases were important stages of peptide differentiation between legumes and wheat. However, peptidome analysis revealed no difference in wheat-derived peptides in the three pasta diets regardless of the digestion phase, indicating that there was a low covalent interaction between wheat gluten and legume proteins.
Assuntos
Proteínas Alimentares/química , Proteínas Alimentares/farmacocinética , Proteínas de Plantas/química , Proteínas de Plantas/farmacocinética , Animais , Culinária , Digestão/fisiologia , Fabaceae/química , Farinha/análise , Alimentos Fortificados/análise , Humanos , Hidrólise , Técnicas In Vitro , Cinética , Lens (Planta)/química , Proteínas do Leite/química , Proteínas do Leite/farmacocinética , Valor Nutritivo , Pisum sativum/química , Agregados Proteicos , Triticum/química , Vicia faba/químicaRESUMO
The mechanisms that are responsible for sarcopenia are numerous, but the altered muscle protein anabolic response to food intake that appears with advancing age plays an important role. Dietary protein quality needs to be optimized to counter this phenomenon. Blending different plant proteins is expected to compensate for the lower anabolic capacity of plant-based when compared to animal-based protein sources. The objective of this work was to evaluate the nutritional value of pasta products that were made from a mix of wheat semolina and faba bean, lentil, or split pea flour, and to assess their effect on protein metabolism as compared to dietary milk proteins in old rats. Forty-three old rats have consumed for six weeks isoproteic and isocaloric diets containing wheat pasta enriched with 62% to 79% legume protein (depending on the type) or milk proteins, i.e., casein or soluble milk proteins (SMP). The protein digestibility of casein and SMP was 5% to 14% higher than legume-enriched pasta. The net protein utilization and skeletal muscle protein synthesis rate were equivalent either in rats fed legume-enriched pasta diets or those fed casein diet, but lower than in rats fed SMP diet. After legume-enriched pasta intake, muscle mass, and protein accretion were in the same range as in the casein and SMP groups. Mixed wheat-legume pasta could be a nutritional strategy for enhancing the protein content and improving the protein quality, i.e., amino acid profile, of this staple food that is more adequate for maintaining muscle mass, especially for older individuals.
Assuntos
Ingestão de Alimentos/fisiologia , Fenômenos Fisiológicos da Nutrição do Idoso/fisiologia , Fabaceae , Proteínas do Leite/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Valor Nutritivo , Proteínas de Vegetais Comestíveis/administração & dosagem , Proteínas/metabolismo , Triticum , Fatores Etários , Proteínas Animais da Dieta/administração & dosagem , Proteínas Animais da Dieta/metabolismo , Animais , Caseínas/administração & dosagem , Caseínas/metabolismo , Masculino , Proteínas do Leite/metabolismo , Proteínas de Vegetais Comestíveis/metabolismo , Proteólise , Ratos WistarRESUMO
Plant-sourced proteins offer environmental and health benefits, and research increasingly includes them in study formulas. However, plant-based proteins have less of an anabolic effect than animal proteins due to their lower digestibility, lower essential amino acid content (especially leucine), and deficiency in other essential amino acids, such as sulfur amino acids or lysine. Thus, plant amino acids are directed toward oxidation rather than used for muscle protein synthesis. In this review, we evaluate the ability of plant- versus animal-based proteins to help maintain skeletal muscle mass in healthy and especially older people and examine different nutritional strategies for improving the anabolic properties of plant-based proteins. Among these strategies, increasing protein intake has led to a positive acute postprandial muscle protein synthesis response and even positive long-term improvement in lean mass. Increasing the quality of protein intake by improving amino acid composition could also compensate for the lower anabolic potential of plant-based proteins. We evaluated and discussed four nutritional strategies for improving the amino acid composition of plant-based proteins: fortifying plant-based proteins with specific essential amino acids, selective breeding, blending several plant protein sources, and blending plant with animal-based protein sources. These nutritional approaches need to be profoundly examined in older individuals in order to optimize protein intake for this population who require a high-quality food protein intake to mitigate age-related muscle loss.
Assuntos
Anabolizantes , Proteínas Alimentares/administração & dosagem , Proteínas Musculares/administração & dosagem , Músculo Esquelético/fisiologia , Proteínas de Plantas/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/análise , Animais , Proteínas Alimentares/farmacologia , Digestão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/análise , Proteínas Musculares/metabolismo , Fenômenos Fisiológicos da Nutrição , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas/fisiologiaRESUMO
BACKGROUND: Wholegrain consumption has been associated with beneficial health effects including reduction of diabetes and cancer risk; however, the underlying mechanisms are not fully understood. OBJECTIVE: The aim of this study was to characterize the effects of wholegrain rye intake on circulating metabolites in a human intervention study using untargeted metabolomics. METHODS: The intervention consisted of 2 successive 4-wk periods in a randomized crossover design, where 15 adults consumed wholegrain rye bread (WGR) or white wheat bread enriched with fermented rye bran (WW+RB), following a 4-wk rye-free period with white wheat bread (WW). Fasting plasma samples were collected at the end of each period and analyzed using liquid chromatography-mass spectrometry. Metabolic profiles were compared to identify compounds discriminating WGR from the WW+RB and WW periods. Because peripheral serotonin is produced mainly in the gut, a hypothesis of its altered biosynthesis as a response to increased cereal fiber intake was tested by measuring intestinal serotonin of mice fed for 9 wk on a high-fat diet supplemented with different sources of fiber (rye bran flour, ground wheat aleurone, or powdered cellulose). RESULTS: Five endogenous metabolites and 15 rye phytochemicals associated with WGR intake were identified. Plasma concentrations of serotonin, taurine, and glycerophosphocholine were significantly lower after the WGR than WW period (Q < 0.05). Concentrations of 2 phosphatidylethanolamine plasmalogens, PE(18:2/P-18:0) and PE(18:2/P-16:0), were lower after the WGR period than the WW+RB period (Q < 0.05). The concentration of serotonin was significantly lower in the colonic tissue of mice that consumed rye bran or wheat aleurone compared with cellulose (P < 0.001). CONCLUSIONS: Wholegrain rye intake decreases plasma serotonin in healthy adults when compared with refined wheat. Intake of rye bran and wheat aleurone decreases colonic serotonin in mice. These results suggest that peripheral serotonin could be a potential link between wholegrain consumption and its associated health effects.Data used in the study were derived from a trial registered at www.clinicaltrials.gov as NCT03550365.
Assuntos
Secale/metabolismo , Serotonina/sangue , Idoso , Animais , Pão/análise , Colo/metabolismo , Fibras na Dieta/metabolismo , Feminino , Humanos , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Triticum/metabolismo , Grãos Integrais/metabolismoRESUMO
BACKGROUND: Accumulating evidence is supporting the protective effect of whole grains against several chronic diseases. Simultaneously, our knowledge is increasing on the impact of gut microbiota on our health and on how diet can modify the composition of our bacterial cohabitants. Herein, we studied C57BL/6 J mice fed with diets enriched with rye bran and wheat aleurone, conventional and germ-free C57BL/6NTac mice on a basal diet, and the colonic fermentation of rye bran in an in vitro model of the human gastrointestinal system. We performed 16S rRNA gene sequencing and metabolomics on the study samples to determine the effect of bran-enriched diets on the gut microbial composition and the potential contribution of microbiota to the metabolism of a novel group of betainized compounds. RESULTS: The bran-enriched study diets elevated the levels of betainized compounds in the colon contents of C57BL/6 J mice. The composition of microbiota changed, and the bran-enriched diets induced an increase in the relative abundance of several bacterial taxa, including Akkermansia, Bifidobacterium, Coriobacteriaceae, Lactobacillus, Parasutterella, and Ruminococcus, many of which are associated with improved health status or the metabolism of plant-based molecules. The levels of betainized compounds in the gut tissues of germ-free mice were significantly lower compared to conventional mice. In the in vitro model of the human gut, the production of betainized compounds was observed throughout the incubation, while the levels of glycine betaine decreased. In cereal samples, only low levels or trace amounts of other betaines than glycine betaine were observed. CONCLUSIONS: Our findings provide evidence that the bacterial taxa increased in relative abundance by the bran-based diet are also involved in the metabolism of glycine betaine into other betainized compounds, adding another potential compound group acting as a mediator of the synergistic metabolic effect of diet and colonic microbiota.
Assuntos
Betaína/metabolismo , Colo/metabolismo , Fermentação , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/metabolismo , Betaína/administração & dosagem , Colo/microbiologia , Dieta , Fibras na Dieta/administração & dosagem , Vida Livre de Germes , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Plantas/administração & dosagemRESUMO
Distribution of phytic acid and phytase activity in pea seeds was analyzed and compared with those in wheat grains under identical assay conditions (55 °C, pH 5.5). Most total phytic acid content and phytase activity were found in pea cotyledons. In wheat grains, debranning resulted in a 70% reduction in phytic acid content, whereas more than 40% of the total phytase activity remained. The possibility to hydrolyze phytic acid by use of ground debranned wheat as a source of phytase in blends with pea cotyledon flour was investigated. The Michaelis-Menten parameters for each endogenous enzyme were identified and used to predict the rate of phytic acid hydrolysis. Results demonstrate a synergistic effect between the two phytase activities, enabling a 70-95% reduction of phytic acid depending on pea/wheat flour ratios in a relatively short time (4 h). This reduction appears to be able to increase zinc bioavailability but remains insufficient for iron.