Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34290145

RESUMO

Insulin-signaling requires conformational change: whereas the free hormone and its receptor each adopt autoinhibited conformations, their binding leads to structural reorganization. To test the functional coupling between insulin's "hinge opening" and receptor activation, we inserted an artificial ligand-dependent switch into the insulin molecule. Ligand-binding disrupts an internal tether designed to stabilize the hormone's native closed and inactive conformation, thereby enabling productive receptor engagement. This scheme exploited a diol sensor (meta-fluoro-phenylboronic acid at GlyA1) and internal diol (3,4-dihydroxybenzoate at LysB28). The sensor recognizes monosaccharides (fructose > glucose). Studies of insulin-signaling in human hepatoma-derived cells (HepG2) demonstrated fructose-dependent receptor autophosphorylation leading to appropriate downstream signaling events, including a specific kinase cascade and metabolic gene regulation (gluconeogenesis and lipogenesis). Addition of glucose (an isomeric ligand with negligible sensor affinity) did not activate the hormone. Similarly, metabolite-regulated signaling was not observed in control studies of 1) an unmodified insulin analog or 2) an analog containing a diol sensor without internal tethering. Although secondary structure (as probed by circular dichroism) was unaffected by ligand-binding, heteronuclear NMR studies revealed subtle local and nonlocal monosaccharide-dependent changes in structure. Insertion of a synthetic switch into insulin has thus demonstrated coupling between hinge-opening and allosteric holoreceptor signaling. In addition to this foundational finding, our results provide proof of principle for design of a mechanism-based metabolite-responsive insulin. In particular, replacement of the present fructose sensor by an analogous glucose sensor may enable translational development of a "smart" insulin analog to mitigate hypoglycemic risk in diabetes therapy.


Assuntos
Insulina/química , Western Blotting , Frutose/química , Frutose/metabolismo , Células Hep G2 , Humanos , Insulina/metabolismo , Ligantes , Modelos Moleculares , Conformação Proteica , Transdução de Sinais
2.
Regul Toxicol Pharmacol ; 88: 56-65, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28526658

RESUMO

Basaglar®/Abasaglar® (Lilly insulin glargine [LY IGlar]) is a long-acting human insulin analogue drug product granted marketing authorisation as a biosimilar to Lantus® (Sanofi insulin glargine [SA IGlar]) by the European Medicines Agency. We assessed the similarity of LY IGlar to the reference drug product, European Union-sourced SA IGlar (EU-SA IGlar), using nonclinical in vitro and in vivo studies. No biologically relevant differences were observed for receptor binding affinity at either the insulin or insulin-like growth factor-1 (IGF-1) receptors, or in assays of functional or de novo lipogenic activity. The mitogenic potential of LY IGlar and EU-SA IGlar was similar when tested in both insulin- and IGF-1 receptor dominant cell systems. Repeated subcutaneous daily dosing of rats for 4 weeks with 0, 0.3, 1.0, or 2.0 mg/kg LY IGlar and EU-SA IGlar produced mortalities and clinical signs consistent with severe hypoglycaemia. Glucodynamic profiles of LY IGlar and EU-SA IGlar in satellite animals showed comparable dose-related hypoglycaemia. Severe hypoglycaemia was associated with axonal degeneration of the sciatic nerve; the incidence and severity were low and did not differ between LY IGlar and EU-SA IGlar. These results demonstrated no biologically relevant differences in toxicity between LY IGlar and EU-SA IGlar.


Assuntos
Medicamentos Biossimilares/toxicidade , Hipoglicemiantes/toxicidade , Insulina Glargina/toxicidade , Animais , Medicamentos Biossimilares/metabolismo , Aprovação de Drogas , União Europeia , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/metabolismo , Técnicas In Vitro , Insulina Glargina/metabolismo , Ratos , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo
3.
J Biol Chem ; 290(33): 20044-59, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26085101

RESUMO

Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE(-/-) mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance.


Assuntos
Inibidores Enzimáticos/farmacologia , Insulina/metabolismo , Insulisina/antagonistas & inibidores , Animais , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/farmacocinética , Células HEK293 , Humanos , Insulisina/química , Modelos Moleculares , Proteólise
4.
J Pharmacol Exp Ther ; 357(3): 459-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27026683

RESUMO

The aim of this research was to characterize the in vivo and in vitro properties of basal insulin peglispro (BIL), a new basal insulin, wherein insulin lispro was derivatized through the covalent and site-specific attachment of a 20-kDa polyethylene-glycol (PEG; specifically, methoxy-terminated) moiety to lysine B28. Addition of the PEG moiety increased the hydrodynamic size of the insulin lispro molecule. Studies show there is a prolonged duration of action and a reduction in clearance. Given the different physical properties of BIL, it was also important to assess the metabolic and mitogenic activity of the molecule. Streptozotocin (STZ)-treated diabetic rats were used to study the pharmacokinetic and pharmacodynamic characteristics of BIL. Binding affinity and functional characterization of BIL were compared with those of several therapeutic insulins, insulin AspB10, and insulin-like growth factor 1 (IGF-1). BIL exhibited a markedly longer time to maximum concentration after subcutaneous injection, a greater area under the concentration-time curve, and a longer duration of action in the STZ-treated diabetic rat than insulin lispro. BIL exhibited reduced binding affinity and functional potency as compared with insulin lispro and demonstrated greater selectivity for the human insulin receptor (hIR) as compared with the human insulin-like growth factor 1 receptor. Furthermore, BIL showed a more rapid rate of dephosphorylation following maximal hIR stimulation, and reduced mitogenic potential in an IGF-1 receptor-dominant cellular model. PEGylation of insulin lispro with a 20-kDa PEG moiety at lysine B28 alters the absorption, clearance, distribution, and activity profile receptor, but does not alter its selectivity and full agonist receptor properties.


Assuntos
Insulina Lispro/química , Insulina Lispro/farmacologia , Polietilenoglicóis/química , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Humanos , Insulina Lispro/metabolismo , Insulina Lispro/farmacocinética , Lipogênese/efeitos dos fármacos , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Especificidade por Substrato , Tirosina/metabolismo
5.
Pharm Res ; 33(12): 2920-2929, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27528391

RESUMO

PURPOSE: Determine the pharmacokinetics of insulin peglispro (BIL) in 5/6-nephrectomized rats and study the absorption in lymph duct cannulated (LDC) sheep. METHODS: BIL is insulin lispro modified with 20-kDa linear PEG at lysine B28 increasing the hydrodynamic size to 4-fold larger than insulin lispro. Pharmacokinetics of BIL and insulin lispro after IV administration were compared in 5/6-nephrectomized and sham rats. BIL was administered IV or SC into the interdigital space of the hind leg, and peripheral lymph and/or serum samples were collected from both LDC and non-LDC sheep to determine pharmacokinetics and absorption route of BIL. RESULTS: The clearance of BIL was similar in 5/6-nephrectomized and sham rats, while the clearance of insulin lispro was 3.3-fold slower in 5/6-nephrectomized rats than in the sham rats. In non-LDC sheep, the terminal half-life after SC was about twice as long vs IV suggesting flip-flop pharmacokinetics. In LDC sheep, bioavailability decreased to <2%; most of the dose was absorbed via the lymphatic system, with 88% ± 19% of the dose collected in the lymph after SC administration. CONCLUSION: This work demonstrates that increasing the hydrodynamic size of insulin lispro through PEGylation can impact both absorption and clearance to prolong drug action.


Assuntos
Hipoglicemiantes/química , Insulina Lispro/química , Linfa/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Meia-Vida , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Injeções Intravenosas , Injeções Subcutâneas , Insulina Lispro/administração & dosagem , Insulina Lispro/farmacocinética , Cinética , Masculino , Peso Molecular , Ratos Sprague-Dawley , Ovinos
6.
J Med Chem ; 65(20): 13892-13909, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36197449

RESUMO

Protein tyrosine phosphatases constitute an important class of drug targets whose potential has been limited by the paucity of drug-like small-molecule inhibitors. We recently described a class of active-site-directed, moderately selective, and potent inhibitors of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP). Here, we report our extensive structure-based design and optimization effort that afforded inhibitors with vastly improved potency and specificity. The leading compound inhibits LMW-PTP potently and selectively (Ki = 1.2 nM, >8000-fold selectivity). Many compounds exhibit favorable drug-like properties, such as low molecular weight, weak cytochrome P450 inhibition, high metabolic stability, moderate to high cell permeability (Papp > 0.2 nm/s), and moderate to good oral bioavailability (% F from 23 to 50% in mice), and therefore can be used as in vivo chemical probes to further dissect the complex biological as well as pathophysiological roles of LMW-PTP and for the development of therapeutics targeting LMW-PTP.


Assuntos
Inibidores Enzimáticos , Proteínas Tirosina Fosfatases , Camundongos , Animais , Peso Molecular , Proteínas Tirosina Fosfatases/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
7.
J Pharm Sci ; 110(3): 1418-1426, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33321138

RESUMO

Insulin infusion sets worn for more than 4-5 days have been associated with a greater risk of unexplained hyperglycemia, a phenomenon that has been hypothesized to be caused by an inflammatory response to preservatives such as m-cresol and phenol. In this cross-over study in diabetic swine, we examined the role of the preservative m-cresol in inflammation and changes in infusion site patency. Insulin pharmacokinetics (PK) and glucose pharmacodynamics (PD) were measured on delivery of a bolus of regular human insulin U-100 (U-100R), formulated with or without 2.5 mg/mL m-cresol, to fasted swine following 0, 3, 5, 7, and 10 days of continuous subcutaneous insulin infusion (CSII). In a subsequent study with the same animals, biopsies were evaluated from swine wearing infusion sets infusing nothing, saline, or U-100R either with or without 2.5 mg/mL m-cresol, following 3, 7, and 10 days of CSII. Exposure to m-cresol did not impact any PK or PD endpoints. PK and PD responses dropped markedly from Days 7-10, regardless of the presence of m-cresol. Histopathology results suggest an additive inflammatory response to both the infusion set and the insulin protein itself, peaking at Day 7 and remaining stable beyond.


Assuntos
Diabetes Mellitus , Insulina , Animais , Glicemia , Cresóis , Estudos Cross-Over , Hipoglicemiantes , Sistemas de Infusão de Insulina , Suínos
8.
Dev Cell ; 3(1): 25-38, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12110165

RESUMO

Insulin signaling in adipose tissue plays an important role in lipid storage and regulation of glucose homeostasis. Using the Cre-loxP system, we created mice with fat-specific disruption of the insulin receptor gene (FIRKO mice). These mice have low fat mass, loss of the normal relationship between plasma leptin and body weight, and are protected against age-related and hypothalamic lesion-induced obesity, and obesity-related glucose intolerance. FIRKO mice also exhibit polarization of adipocytes into populations of large and small cells, which differ in expression of fatty acid synthase, C/EBP alpha, and SREBP-1. Thus, insulin signaling in adipocytes is critical for development of obesity and its associated metabolic abnormalities, and abrogation of insulin signaling in fat unmasks a heterogeneity in adipocyte response in terms of gene expression and triglyceride storage.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Intolerância à Glucose/genética , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Musculares , Obesidade/genética , Receptor de Insulina/deficiência , Fatores de Transcrição , Adiponectina , Tecido Adiposo/fisiopatologia , Animais , Aurotioglucose/farmacologia , Peso Corporal/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Tamanho Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Metabolismo Energético/genética , Feminino , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/fisiopatologia , Transportador de Glucose Tipo 1 , Transportador de Glucose Tipo 4 , Leptina/sangue , Masculino , Camundongos , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Proteínas/genética , Proteínas/metabolismo , Receptor de Insulina/genética , Proteína de Ligação a Elemento Regulador de Esterol 1 , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/patologia , Núcleo Hipotalâmico Ventromedial/fisiopatologia
9.
Diabetes ; 67(2): 309-320, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29203510

RESUMO

Therapeutic engineering of glucagon-like peptide 1 (GLP-1) has enabled development of new medicines to treat type 2 diabetes. These injectable analogs achieve robust glycemic control by increasing concentrations of "GLP-1 equivalents" (∼50 pmol/L). Similar levels of endogenous GLP-1 occur after gastric bypass surgery, and mechanistic studies indicate glucose lowering by these procedures is driven by GLP-1. Therefore, because of the remarkable signaling and secretory capacity of the GLP-1 system, we sought to discover mechanisms that increase GLP-1 pharmacologically. To study active GLP-1, glucose-dependent insulinotropic polypeptide receptor (Gipr)-deficient mice receiving background dipeptidyl peptidase 4 (DPP4) inhibitor treatment were characterized as a model for evaluating oral agents that increase circulating GLP-1. A somatostatin receptor 5 antagonist, which blunts inhibition of GLP-1 release, and agonists for TGR5 and GPR40, which stimulate GLP-1 secretion, were investigated alone and in combination with the DPP4 inhibitor sitagliptin; these only modestly increased GLP-1 (∼5-30 pmol/L). However, combining molecules to simultaneously intervene at multiple regulatory nodes synergistically elevated active GLP-1 to unprecedented concentrations (∼300-400 pmol/L), drastically reducing glucose in Gipr null and Leprdb/db mice in a GLP-1 receptor-dependent manner. Our studies demonstrate that complementary pathways can be engaged to robustly increase GLP-1 without invasive surgical or injection regimens.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Drogas em Investigação/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Modelos Biológicos , Receptores Acoplados a Proteínas G/agonistas , Administração Oral , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Drogas em Investigação/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Hiperglicemia/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Estudo de Prova de Conceito , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Fosfato de Sitagliptina/uso terapêutico
10.
Cell Rep ; 23(4): 967-973, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694904

RESUMO

Bariatric surgery, such as vertical sleeve gastrectomy (VSG), causes high rates of type 2 diabetes remission and remarkable increases in postprandial glucagon-like peptide-1 (GLP-1) secretion. GLP-1 plays a critical role in islet function by potentiating glucose-stimulated insulin secretion; however, the mechanisms remain incompletely defined. Therefore, we applied a murine VSG model to an inducible ß cell-specific GLP-1 receptor (GLP-1R) knockout mouse model to investigate the role of the ß cell GLP-1R in islet function. Our data show that loss of ß cell GLP-1R signaling decreases α cell GLP-1 expression after VSG. Furthermore, we find a ß cell GLP-1R-dependent increase in α cell expression of the prohormone convertase required for the production of GLP-1 after VSG. Together, the findings herein reveal two concepts. First, our data support a paracrine role for α cell-derived GLP-1 in the metabolic benefits observed after VSG. Second, we have identified a role for the ß cell GLP-1R as a regulator of α cell proglucagon processing.


Assuntos
Gastrectomia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Comunicação Parácrina , Proglucagon/metabolismo , Transdução de Sinais , Animais , Cirurgia Bariátrica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Células Secretoras de Glucagon/patologia , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Knockout , Proglucagon/genética , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo
11.
Endocrinology ; 148(2): 683-92, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17068142

RESUMO

Adiponectin/adiponectin receptors (AdipoR) are involved in energy homeostasis and inflammatory pathways. To investigate the role of AdipoR2 in metabolic control, we studied the lipid and glucose metabolic phenotypes in AdipoR2-deficient mice. AdipoR2 deletion diminished high-fat diet-induced dyslipidemia and insulin resistance yet deteriorated glucose homeostasis as high-fat feeding continued, which resulted from the failure of pancreatic beta-cells to adequately compensate for the moderate insulin resistance. A defect in the AdipoR2 gene may represent a mechanism underlying the etiology of certain subgroups of type 2 diabetic patients who eventually develop overt diabetes, whereas other obese patients do not.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Dieta , Resistência à Insulina , Receptores de Superfície Celular/deficiência , Animais , Glicemia/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Relação Dose-Resposta a Droga , Dislipidemias/fisiopatologia , Ingestão de Energia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/sangue , Obesidade/fisiopatologia , Receptores de Adiponectina , Aumento de Peso
12.
J Clin Invest ; 113(11): 1571-81, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15173883

RESUMO

Uncontrolled hepatic glucose production contributes significantly to hyperglycemia in patients with type 2 diabetes. Hyperglucagonemia is implicated in the etiology of this condition; however, effective therapies to block glucagon signaling and thereby regulate glucose metabolism do not exist. To determine the extent to which blocking glucagon action would reverse hyperglycemia, we targeted the glucagon receptor (GCGR) in rodent models of type 2 diabetes using 2'-methoxyethyl-modified phosphorothioate-antisense oligonucleotide (ASO) inhibitors. Treatment with GCGR ASOs decreased GCGR expression, normalized blood glucose, improved glucose tolerance, and preserved insulin secretion. Importantly, in addition to decreasing expression of cAMP-regulated genes in liver and preventing glucagon-mediated hepatic glucose production, GCGR inhibition increased serum concentrations of active glucagon-like peptide-1 (GLP-1) and insulin levels in pancreatic islets. Together, these studies identify a novel mechanism whereby GCGR inhibitors reverse the diabetes phenotype by the dual action of decreasing hepatic glucose production and improving pancreatic beta cell function.


Assuntos
Diabetes Mellitus/metabolismo , Fígado/metabolismo , Oligodesoxirribonucleotídeos Antissenso/metabolismo , Peptídeos/metabolismo , Receptores de Glucagon/genética , Animais , Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Camundongos , Oligodesoxirribonucleotídeos Antissenso/genética , Ratos
13.
PLoS One ; 12(6): e0179856, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640857

RESUMO

The FATZO/Pco mouse is the result of a cross of the C57BL/6J and AKR/J strains. The crossing of these two strains and the selective inbreeding for obesity, insulin resistance and hyperglycemia has resulted in an inbred strain exhibiting obesity in the presumed presence of an intact leptin pathway. Routinely used rodent models for obesity and diabetes research have a monogenic defect in leptin signaling that initiates obesity. Given that obesity and its sequelae in humans are polygenic in nature and not associated with leptin signaling defects, the FATZO mouse may represent a more translatable rodent model for study of obesity and its associated metabolic disturbances. The FATZO mouse develops obesity spontaneously when fed a normal chow diet. Glucose intolerance with increased insulin levels are apparent in FATZO mice as young as 6 weeks of age. These progress to hyperglycemia/pre-diabetes and frank diabetes with decreasing insulin levels as they age. The disease in these mice is multi-faceted, similar to the metabolic syndrome apparent in obese individuals, and thus provides a long pre-diabetic state for determining the preventive value of new interventions. We have assessed the utility of this new model for the pre-clinical screening of agents to stop or slow progression of the metabolic syndrome to severe diabetes. Our assessment included: 1) characterization of the spontaneous development of disease, 2) comparison of metabolic disturbances of FATZO mice to control mice and 3) validation of the model with regard to the effectiveness of current and emerging anti-diabetic agents; rosiglitazone, metformin and semaglutide. CONCLUSION: Male FATZO mice spontaneously develop significant metabolic disease when compared to normal controls while maintaining hyperglycemia in the presence of high leptin levels and hyperinsulinemia. The disease condition responds to commonly used antidiabetic agents.


Assuntos
Glucose/metabolismo , Hipoglicemiantes/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Triglicerídeos/sangue
14.
PLoS One ; 12(6): e0179808, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640904

RESUMO

Obesity in many current pre-clinical animal models of obesity and diabetes is mediated by monogenic mutations; these are rarely associated with the development of human obesity. A new mouse model, the FATZO mouse, has been developed to provide polygenic obesity and a metabolic pattern of hyperglycemia and hyperinsulinemia, that support the presence of insulin resistance similar to metabolic disease in patients with insulin resistance/type 2 diabetes. The FATZO mouse resulted from a cross of C57BL/6J and AKR/J mice followed by selective inbreeding for obesity, increased insulin and hyperglycemia. Since many clinical studies have established a close link between higher body weight and the development of type 2 diabetes, we investigated whether time to progression to type 2 diabetes or disease severity in FATZO mice was dependent on weight gain in young animals. Our results indicate that lighter animals developed metabolic disturbances much slower and to a lesser magnitude than their heavier counterparts. Consumption of a diet containing high fat, accelerated weight gain in parallel with disease progression. A naturally occurring and significant variation in the body weight of FATZO offspring enables these mice to be identified as low, mid and high body weight groups at a young age. These weight groups remain into adulthood and correspond to slow, medium and accelerated development of type 2 diabetes. Thus, body weight inclusion criteria can optimize the FATZO model for studies of prevention, stabilization or treatment of type 2 diabetes.


Assuntos
Peso Corporal , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Ingestão de Alimentos , Insulina/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/fisiopatologia , Pâncreas/metabolismo
15.
Mol Cell Endocrinol ; 454: 23-38, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576743

RESUMO

BACKGROUND: Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. METHODS AND MATERIALS: Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. RESULTS: Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. CONCLUSIONS: Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than the rate of clearance for human insulin. In contrast, the PEG moiety of BIL can recycle out of cells.


Assuntos
Endocitose , Insulina Lispro/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Ligantes , Lisossomos/metabolismo , Fosforilação , Receptor de Insulina/metabolismo , Transdução de Sinais , Fatores de Tempo
16.
Diabetes ; 54(6): 1846-53, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15919808

RESUMO

Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC-responsive genes such as PEPCK in the liver and decreased circulating lymphocytes. GCCR ASO treatment completely inhibited the increase in dexamethasone-induced PEPCK expression in the liver without causing any change in the dexamethasone-induced lymphopenia. These studies demonstrate that tissue-selective GCCR antagonism with ASOs may be a viable therapeutic strategy for the treatment of the metabolic syndrome.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado/metabolismo , Oligorribonucleotídeos Antissenso/farmacologia , Receptores de Glucocorticoides/metabolismo , Animais , Dexametasona/farmacologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Linfopenia/induzido quimicamente , Linfopenia/fisiopatologia , Camundongos , Camundongos Obesos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Ratos
17.
Endocrinology ; 157(9): 3405-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27501183

RESUMO

Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible for this remain incompletely defined. Glucagon-like peptide-1 (GLP-1) is a gut hormone that contributes to the maintenance of glucose homeostasis and is elevated after VSG. VSG-induced increases in postprandial GLP-1 secretion have been proposed to contribute to the glucoregulatory benefits of VSG; however, previous work has been equivocal. In order to test the contribution of enhanced ß-cell GLP-1 receptor (GLP-1R) signaling we used a ß-cell-specific tamoxifen-inducible GLP-1R knockout mouse model. Male ß-cell-specific Glp-1r(ß-cell+/+) wild type (WT) and Glp-1r(ß-cell-/-) knockout (KO) littermates were placed on a high-fat diet for 6 weeks and then switched to high-fat diet supplemented with tamoxifen for the rest of the study. Mice underwent sham or VSG surgery after 2 weeks of tamoxifen diet and were fed ad libitum postoperatively. Mice underwent oral glucose tolerance testing at 3 weeks and were euthanized at 6 weeks after surgery. VSG reduced body weight and food intake independent of genotype. However, glucose tolerance was only improved in VSG WT compared with sham WT, whereas VSG KO had impaired glucose tolerance relative to VSG WT. Augmentation of glucose-stimulated insulin secretion during the oral glucose tolerance test was blunted in VSG KO compared with VSG WT. Therefore, our data suggest that enhanced ß-cell GLP-1R signaling contributes to improved glucose regulation after VSG by promoting increased glucose-stimulated insulin secretion.


Assuntos
Gastrectomia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Transtornos do Metabolismo de Glucose/cirurgia , Células Secretoras de Insulina/metabolismo , Animais , Peso Corporal , Ingestão de Alimentos , Teste de Tolerância a Glucose , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos Knockout , Tamoxifeno
18.
Endocrinology ; 146(12): 5380-7, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16123164

RESUMO

Peroxisomes are the exclusive site for the beta-oxidation of very-long-chain fatty acids of more than 20 carbons in length (VLCFAs). Although the bulk of dietary long-chain fatty acids are oxidized in the mitochondria, VLCFAs cannot be catabolized in mitochondria and must be shortened first by peroxisomal beta-oxidation. The regulation of peroxisomal, mitochondrial, and microsomal fatty acid oxidation systems in liver is mediated principally by peroxisome proliferator-activated receptor alpha (PPARalpha). In this study we provide evidence that the liver X receptor (LXR) regulates the expression of the genetic program for peroxisomal beta-oxidation in liver. The genes encoding the three enzymes of the classic peroxisomal beta-oxidation cycle, acyl-coenzyme A (acyl-CoA) oxidase, enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase, are activated by the LXR ligand, T0901317. Accordingly, administration of T0901317 in mice promoted a dose-dependent and greater than 2-fold increase in the rate of peroxisomal beta-oxidation in the liver. The LXR effect is independent of PPARalpha, because T0901317-induced peroxisomal beta-oxidation in the liver of PPARalpha-null mice. Interestingly, T0901317-induced peroxisomal beta-oxidation is dependent on the LXRalpha isoform, but not the LXRbeta isoform. We propose that induction of peroxisomal beta-oxidation by LXR agonists may serve as a counterregulatory mechanism for responding to the hypertriglyceridemia and liver steatosis that is promoted by potent LXR agonists in vivo; however, additional studies are warranted.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Ácidos Graxos/metabolismo , Fígado/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Acetil-CoA C-Aciltransferase/genética , Acil Coenzima A/genética , Animais , Relação Dose-Resposta a Droga , Enoil-CoA Hidratase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrocarbonetos Fluorados , Ligantes , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nucleares Órfãos , Oxirredução/efeitos dos fármacos , PPAR alfa/deficiência , PPAR alfa/fisiologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia
19.
Diabetes ; 64(3): 819-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25288673

RESUMO

The absence of insulin results in oscillating hyperglycemia and ketoacidosis in type 1 diabetes. Remarkably, mice genetically deficient in the glucagon receptor (Gcgr) are refractory to the pathophysiological symptoms of insulin deficiency, and therefore, studies interrogating this unique model may uncover metabolic regulatory mechanisms that are independent of insulin. A significant feature of Gcgr-null mice is the high circulating concentrations of GLP-1. Hence, the objective of this report was to investigate potential noninsulinotropic roles of GLP-1 in mice where GCGR signaling is inactivated. For these studies, pancreatic ß-cells were chemically destroyed by streptozotocin (STZ) in Gcgr(-/-):Glp-1r(-/-) mice and in Glp-1r(-/-) animals that were subsequently treated with a high-affinity GCGR antagonist antibody that recapitulates the physiological state of Gcgr ablation. Loss of GLP-1 action substantially worsened nonfasting glucose concentrations and glucose tolerance in mice deficient in, and undergoing pharmacological inhibition of, the GCGR. Further, lack of the Glp-1r in STZ-treated Gcgr(-/-) mice elevated rates of endogenous glucose production, likely accounting for the differences in glucose homeostasis. These results support the emerging hypothesis that non-ß-cell actions of GLP-1 analogs may improve metabolic control in patients with insulinopenic diabetes.


Assuntos
Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Receptores de Glucagon/deficiência , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Estreptozocina/farmacologia
20.
PLoS One ; 10(8): e0136873, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312995

RESUMO

Activation of TGR5 via bile acids or bile acid analogs leads to the release of glucagon-like peptide-1 (GLP-1) from intestine, increases energy expenditure in brown adipose tissue, and increases gallbladder filling with bile. Here, we present compound 18, a non-bile acid agonist of TGR5 that demonstrates robust GLP-1 secretion in a mouse enteroendocrine cell line yet weak GLP-1 secretion in a human enteroendocrine cell line. Acute administration of compound 18 to mice increased GLP-1 and peptide YY (PYY) secretion, leading to a lowering of the glucose excursion in an oral glucose tolerance test (OGTT), while chronic administration led to weight loss. In addition, compound 18 showed a dose-dependent increase in gallbladder filling. Lastly, compound 18 failed to show similar pharmacological effects on GLP-1, PYY, and gallbladder filling in Tgr5 knockout mice. Together, these results demonstrate that compound 18 is a mouse-selective TGR5 agonist that induces GLP-1 and PYY secretion, and lowers the glucose excursion in an OGTT, but only at doses that simultaneously induce gallbladder filling. Overall, these data highlight the benefits and potential risks of using TGR5 agonists to treat diabetes and metabolic diseases.


Assuntos
Vesícula Biliar/efeitos dos fármacos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Vesícula Biliar/fisiopatologia , Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeo YY/metabolismo , Receptores Acoplados a Proteínas G/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA