Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Biomed Inform ; 156: 104681, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960273

RESUMO

The multimorbidity problem involves the identification and mitigation of adverse interactions that occur when multiple computer interpretable guidelines are applied concurrently to develop a treatment plan for a patient diagnosed with multiple diseases. Solving this problem requires decision support approaches which are difficult to comprehend for physicians. As such, the rationale for treatment plans generated by these approaches needs to be provided. OBJECTIVE: To develop an explainability component for an automated planning-based approach to the multimorbidity problem, and to assess the fidelity and interpretability of generated explanations using a clinical case study. METHODS: The explainability component leverages the task-network model for representing computer interpretable guidelines. It generates post-hoc explanations composed of three aspects that answer why specific clinical actions are in a treatment plan, why specific revisions were applied, and how factors like medication cost, patient's adherence, etc. influence the selection of specific actions. The explainability component is implemented as part of MitPlan, where we revised our planning-based approach to support explainability. We developed an evaluation instrument based on the system causability scale and other vetted surveys to evaluate the fidelity and interpretability of its explanations using a two dimensional comparison study design. RESULTS: The explainability component was implemented for MitPlan and tested in the context of a clinical case study. The fidelity and interpretability of the generated explanations were assessed using a physician-focused evaluation study involving 21 participants from two different specialties and two levels of experience. Results show that explanations provided by the explainability component in MitPlan are of acceptable fidelity and interpretability, and that the clinical justification of the actions in a treatment plan is important to physicians. CONCLUSION: We created an explainability component that enriches an automated planning-based approach to solving the multimorbidity problem with meaningful explanations for actions in a treatment plan. This component relies on the task-network model to represent computer interpretable guidelines and as such can be ported to other approaches that also use the task-network model representation. Our evaluation study demonstrated that explanations that support a physician's understanding of the clinical reasons for the actions in a treatment plan are useful and important.


Assuntos
Multimorbidade , Humanos , Sistemas de Apoio a Decisões Clínicas , Planejamento de Assistência ao Paciente
2.
J Nurs Scholarsh ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248511

RESUMO

BACKGROUND: A whole person approach to healthy aging can provide insight into social factors that may be critical. Digital technologies, such as mobile health (mHealth) applications, hold promise to provide novel insights for healthy aging and the ability to collect data between clinical care visits. Machine learning/artificial intelligence methods have the potential to uncover insights into healthy aging. Nurses and nurse informaticians have a unique lens to shape the future use of this technology. METHODS: The purpose of this research was to apply machine learning methods to MyStrengths+MyHealth de-identified data (N = 988) for adults 45 years of age and older. An exploratory data analysis process guided this work. RESULTS: Overall (n = 988), the average Strength was 66.1% (SD = 5.1), average Challenges 66.5% (SD = 7.5), and average Needs 60.06% (SD = 3.1). There was a significant difference between Strengths and Needs (p < 0.001), between Challenges and Needs (p < 0.001), and no significant differences between average Strengths and Challenges. Four concept groups were identified from the data (Thinking, Moving, Emotions, and Sleeping). The Thinking group had the most statistically significant challenges (11) associated with having at least one Thinking Challenge and the highest average Strengths (66.5%) and Needs (83.6%) compared to the other groups. CONCLUSION: This retrospective analysis applied machine learning methods to de-identified whole person health resilience data from the MSMH application. Adults 45 and older had many Strengths despite numerous Challenges and Needs. The Thinking group had the highest Strengths, Challenges, and Needs, which aligns with the literature and highlights the co-occurring health challenges experienced by this group. Machine learning methods applied to consumer health data identify unique insights applicable to specific conditions (e.g., cognitive) and healthy aging. The next steps involve testing personalized interventions with nurses leading artificial intelligence integration into clinical care.

3.
J Biomed Inform ; 142: 104395, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201618

RESUMO

OBJECTIVE: The study has dual objectives. Our first objective (1) is to develop a community-of-practice-based evaluation methodology for knowledge-intensive computational methods. We target a whitebox analysis of the computational methods to gain insight on their functional features and inner workings. In more detail, we aim to answer evaluation questions on (i) support offered by computational methods for functional features within the application domain; and (ii) in-depth characterizations of the underlying computational processes, models, data and knowledge of the computational methods. Our second objective (2) involves applying the evaluation methodology to answer questions (i) and (ii) for knowledge-intensive clinical decision support (CDS) methods, which operationalize clinical knowledge as computer interpretable guidelines (CIG); we focus on multimorbidity CIG-based clinical decision support (MGCDS) methods that target multimorbidity treatment plans. MATERIALS AND METHODS: Our methodology directly involves the research community of practice in (a) identifying functional features within the application domain; (b) defining exemplar case studies covering these features; and (c) solving the case studies using their developed computational methods-research groups detail their solutions and functional feature support in solution reports. Next, the study authors (d) perform a qualitative analysis of the solution reports, identifying and characterizing common themes (or dimensions) among the computational methods. This methodology is well suited to perform whitebox analysis, as it directly involves the respective developers in studying inner workings and feature support of computational methods. Moreover, the established evaluation parameters (e.g., features, case studies, themes) constitute a re-usable benchmark framework, which can be used to evaluate new computational methods as they are developed. We applied our community-of-practice-based evaluation methodology on MGCDS methods. RESULTS: Six research groups submitted comprehensive solution reports for the exemplar case studies. Solutions for two of these case studies were reported by all groups. We identified four evaluation dimensions: detection of adverse interactions, management strategy representation, implementation paradigms, and human-in-the-loop support. Based on our whitebox analysis, we present answers to the evaluation questions (i) and (ii) for MGCDS methods. DISCUSSION: The proposed evaluation methodology includes features of illuminative and comparison-based approaches; focusing on understanding rather than judging/scoring or identifying gaps in current methods. It involves answering evaluation questions with direct involvement of the research community of practice, who participate in setting up evaluation parameters and solving exemplar case studies. Our methodology was successfully applied to evaluate six MGCDS knowledge-intensive computational methods. We established that, while the evaluated methods provide a multifaceted set of solutions with different benefits and drawbacks, no single MGCDS method currently provides a comprehensive solution for MGCDS. CONCLUSION: We posit that our evaluation methodology, applied here to gain new insights into MGCDS, can be used to assess other types of knowledge-intensive computational methods and answer other types of evaluation questions. Our case studies can be accessed at our GitHub repository (https://github.com/william-vw/MGCDS).


Assuntos
Multimorbidade , Planejamento de Assistência ao Paciente , Humanos
4.
Comput Inform Nurs ; 40(10): 691-698, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483103

RESUMO

Critical care nurses manage complex patient care interventions under dynamic, time-sensitive and constrained conditions, yet clinical decision support systems for nurses are limited compared with advanced practice healthcare providers. In this work, we study and analyze nurses' information-seeking behaviors to inform the development of a clinical decision support system that supports nurses. Nurses from an urban midwestern hospital were recruited to complete an online survey containing eight open-ended questions about resource utilization for various nursing tasks and open space for additional insights. Frequencies and percentages were calculated for resource type, bivariate analyses using Pearson's χ2 test were conducted for differences in resources utilization by years of experience, and content analysis of free text was completed. Forty-five nurses (response rate, 19.6%) identified 38 unique resources, which we organized into a resource taxonomy. Institutional applications were the most common type of resource used (35.6% of all responses) but accounted for only 15.4% of respondents' "go-to resources," suggesting potential areas for improvement. Our findings highlight that knowing where to look for information, the existence of comprehensive information, and fast and easy retrieval of information are key resource seeking attributes that must be considered when designing a clinical decision support system.


Assuntos
Cuidados Críticos , Enfermeiras e Enfermeiros , Atitude do Pessoal de Saúde , Hospitais Urbanos , Humanos , Inquéritos e Questionários
5.
J Adv Nurs ; 77(9): 3707-3717, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34003504

RESUMO

AIM: To develop a consensus paper on the central points of an international invitational think-tank on nursing and artificial intelligence (AI). METHODS: We established the Nursing and Artificial Intelligence Leadership (NAIL) Collaborative, comprising interdisciplinary experts in AI development, biomedical ethics, AI in primary care, AI legal aspects, philosophy of AI in health, nursing practice, implementation science, leaders in health informatics practice and international health informatics groups, a representative of patients and the public, and the Chair of the ITU/WHO Focus Group on Artificial Intelligence for Health. The NAIL Collaborative convened at a 3-day invitational think tank in autumn 2019. Activities included a pre-event survey, expert presentations and working sessions to identify priority areas for action, opportunities and recommendations to address these. In this paper, we summarize the key discussion points and notes from the aforementioned activities. IMPLICATIONS FOR NURSING: Nursing's limited current engagement with discourses on AI and health posts a risk that the profession is not part of the conversations that have potentially significant impacts on nursing practice. CONCLUSION: There are numerous gaps and a timely need for the nursing profession to be among the leaders and drivers of conversations around AI in health systems. IMPACT: We outline crucial gaps where focused effort is required for nursing to take a leadership role in shaping AI use in health systems. Three priorities were identified that need to be addressed in the near future: (a) Nurses must understand the relationship between the data they collect and AI technologies they use; (b) Nurses need to be meaningfully involved in all stages of AI: from development to implementation; and (c) There is a substantial untapped and an unexplored potential for nursing to contribute to the development of AI technologies for global health and humanitarian efforts.


Assuntos
Inteligência Artificial , Liderança , Humanos , Tecnologia
6.
J Med Syst ; 42(11): 234, 2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30317403

RESUMO

Poor patient compliance to therapy results in a worsening condition that often increases healthcare costs. In the MobiGuide project, we developed an evidence-based clinical decision-support system that delivered personalized reminders and recommendations to patients, helping to achieve higher therapy compliance. Yet compliance could still be improved and therefore building on the MobiGuide project experience, we designed a new component called the Motivational Patient Assistant (MPA) that is integrated within the MobiGuide architecture to further improve compliance. This component draws from psychological theories to provide behavioral support to improve patient engagement and thereby increasing patients' compliance. Behavior modification interventions are delivered via mobile technology at patients' home environments. Our approach was inspired by the IDEAS (Integrate, Design, Assess, and Share) framework for developing effective digital interventions to change health behavior; it goes beyond this approach by extending the Ideation phase' concepts into concrete backend architectural components and graphical user-interface designs that implement behavioral interventions. We describe in detail our ideation approach and how it was applied to design the user interface of MPA for anticoagulation therapy for the atrial fibrillation patients. We report results of a preliminary evaluation involving patients and care providers that shows the potential usefulness of the MPA for improving compliance to anticoagulation therapy.


Assuntos
Anticoagulantes/administração & dosagem , Fibrilação Atrial/tratamento farmacológico , Terapia Comportamental/métodos , Adesão à Medicação/psicologia , Telemedicina/organização & administração , Anticoagulantes/uso terapêutico , Doença Crônica , Empatia , Objetivos , Estilo de Vida Saudável , Humanos , Participação do Paciente , Satisfação do Paciente , Autocuidado
7.
J Sci Educ Technol ; 27(6): 566-580, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31105416

RESUMO

Mobile applications (apps) for learning technical scientific content are becoming increasingly popular in educational settings. Neuroscience is often considered complex and challenging for most students to understand conceptually. iNeuron is a recently developed iOS app that teaches basic neuroscience in the context of a series of scaffolded challenges to create neural circuits and increase understanding of nervous system structure and function. In this study, four different ways to implement the app within a classroom setting were explored. The goal of the study was to determine the app's effectiveness under conditions closely approximating real-world use, and to evaluate whether collaborative play and student-driven navigational features contributed to its effectiveness. Students used the app either individually or in small groups, and used a version with either a fixed or variable learning sequence. Student performance on a pre- and post- neuroscience content assessment was analyzed and compared between students who used the app and a control group receiving standard instruction, and logged app data were analyzed. Significantly greater learning gains were found for all students who used the app compared to control. All four implementation modes were effective in producing student learning gains relative to controls, but did not differ in their effectiveness to one another. In addition, students demonstrated transfer of information learned in one context to another within the app. These results suggest that teacher-led neuroscience instruction can be effectively supported by a scaffolded, technology-based curriculum which can be implemented in multiple ways to enhance student learning.

8.
J Biomed Inform ; 66: 52-71, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27939413

RESUMO

In this work we propose a comprehensive framework based on first-order logic (FOL) for mitigating (identifying and addressing) interactions between multiple clinical practice guidelines (CPGs) applied to a multi-morbid patient while also considering patient preferences related to the prescribed treatment. With this framework we respond to two fundamental challenges associated with clinical decision support: (1) concurrent application of multiple CPGs and (2) incorporation of patient preferences into the decision making process. We significantly expand our earlier research by (1) proposing a revised and improved mitigation-oriented representation of CPGs and secondary medical knowledge for addressing adverse interactions and incorporating patient preferences and (2) introducing a new mitigation algorithm. Specifically, actionable graphs representing CPGs allow for parallel and temporal activities (decisions and actions). Revision operators representing secondary medical knowledge support temporal interactions and complex revisions across multiple actionable graphs. The mitigation algorithm uses the actionable graphs, revision operators and available (and possibly incomplete) patient information represented in FOL. It relies on a depth-first search strategy to find a valid sequence of revisions and uses theorem proving and model finding techniques to identify applicable revision operators and to establish a management scenario for a given patient if one exists. The management scenario defines a safe (interaction-free) and preferred set of activities together with possible patient states. We illustrate the use of our framework with a clinical case study describing two patients who suffer from chronic kidney disease, hypertension, and atrial fibrillation, and who are managed according to CPGs for these diseases. While in this paper we are primarily concerned with the methodological aspects of mitigation, we also briefly discuss a high-level proof of concept implementation of the proposed framework in the form of a clinical decision support system (CDSS). The proposed mitigation CDSS "insulates" clinicians from the complexities of the FOL representations and provides semantically meaningful summaries of mitigation results. Ultimately we plan to implement the mitigation CDSS within our MET (Mobile Emergency Triage) decision support environment.


Assuntos
Algoritmos , Doença Crônica/terapia , Sistemas de Apoio a Decisões Clínicas , Humanos , Hipertensão , Guias de Prática Clínica como Assunto
10.
JMIR Nurs ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270742

RESUMO

UNSTRUCTURED: The ethics of artificial intelligence (AI) are increasingly recognized due to concerns such as algorithmic bias, opacity, trust issues, data security, and fairness. Specifically, machine learning algorithms, central to AI technologies, are essential in striving for ethically sound systems that mimic human intelligence. These technologies rely heavily on data, which often remain obscured within complex systems and must be prioritized for ethical collection, processing, and usage. The significance of data ethics in achieving responsible AI was first highlighted in the broader context of healthcare and subsequently in nursing. This presentation explores the principles of data ethics, drawing on relevant frameworks and strategies identified through a formal literature review. These principles apply to real-world and synthetic data in AI and machine learning contexts. Additionally, the data-centric AI paradigm is briefly examined, emphasizing its focus on data quality and the ethical development of AI solutions that integrate human-centered domain expertise. The ethical considerations specific to nursing are addressed, including four recommendations for future directions in nursing practice, research, and education and two hypothetical nurse-focused ethical case studies. The primary objectives are to position nurses to actively participate in AI and data ethics, thereby contributing to creating high-quality, relevant data for machine learning applications.

11.
JMIR Nurs ; 7: e62678, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39453630

RESUMO

Unlabelled: The ethics of artificial intelligence (AI) are increasingly recognized due to concerns such as algorithmic bias, opacity, trust issues, data security, and fairness. Specifically, machine learning algorithms, central to AI technologies, are essential in striving for ethically sound systems that mimic human intelligence. These technologies rely heavily on data, which often remain obscured within complex systems and must be prioritized for ethical collection, processing, and usage. The significance of data ethics in achieving responsible AI was first highlighted in the broader context of health care and subsequently in nursing. This viewpoint explores the principles of data ethics, drawing on relevant frameworks and strategies identified through a formal literature review. These principles apply to real-world and synthetic data in AI and machine-learning contexts. Additionally, the data-centric AI paradigm is briefly examined, emphasizing its focus on data quality and the ethical development of AI solutions that integrate human-centered domain expertise. The ethical considerations specific to nursing are addressed, including 4 recommendations for future directions in nursing practice, research, and education and 2 hypothetical nurse-focused ethical case studies. The primary objectives are to position nurses to actively participate in AI and data ethics, thereby contributing to creating high-quality and relevant data for machine learning applications.


Assuntos
Inteligência Artificial , Inteligência Artificial/ética , Inteligência Artificial/tendências , Humanos , Educação em Enfermagem , Previsões , Ética em Enfermagem , Pesquisa em Enfermagem/ética , Aprendizado de Máquina/ética
12.
Pac Symp Biocomput ; 29: 24-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160267

RESUMO

We present a fully automated AI-based system for intensive monitoring of cognitive symptoms of neurotoxicity that frequently appear as a result of immunotherapy of hematologic malignancies. Early manifestations of these symptoms are evident in the patient's speech in the form of mild aphasia and confusion and can be detected and effectively treated prior to onset of more serious and potentially life-threatening impairment. We have developed the Automated Neural Nursing Assistant (ANNA) system designed to conduct a brief cognitive assessment several times per day over the telephone for 5-14 days following infusion of the immunotherapy medication. ANNA uses a conversational agent based on a large language model to elicit spontaneous speech in a semi-structured dialogue, followed by a series of brief language-based neurocognitive tests. In this paper we share ANNA's design and implementation, results of a pilot functional evaluation study, and discuss technical and logistic challenges facing the introduction of this type of technology in clinical practice. A large-scale clinical evaluation of ANNA will be conducted in an observational study of patients undergoing immunotherapy at the University of Minnesota Masonic Cancer Center starting in the Fall 2023.


Assuntos
Biologia Computacional , Idioma , Humanos
13.
J Nurs Educ ; : 1-4, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38302101

RESUMO

This article examines the potential of generative artificial intelligence (AI), such as ChatGPT (Chat Generative Pre-trained Transformer), in nursing education and the associated challenges and recommendations for their use. Generative AI offers potential benefits such as aiding students with assignments, providing realistic patient scenarios for practice, and enabling personalized, interactive learning experiences. However, integrating generative AI in nursing education also presents challenges, including academic integrity issues, the potential for plagiarism and copyright infringements, ethical implications, and the risk of producing misinformation. Clear institutional guidelines, comprehensive student education on generative AI, and tools to detect AI-generated content are recommended to navigate these challenges. The article concludes by urging nurse educators to harness generative AI's potential responsibly, highlighting the rewards of enhanced learning and increased efficiency. The careful navigation of these challenges and strategic implementation of AI is key to realizing the promise of AI in nursing education. [J Nurs Educ. 2024;63(X):XXX-XXX.].

14.
J Biomed Inform ; 46(2): 341-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376273

RESUMO

We propose a new method to mitigate (identify and address) adverse interactions (drug-drug or drug-disease) that occur when a patient with comorbid diseases is managed according to two concurrently applied clinical practice guidelines (CPGs). A lack of methods to facilitate the concurrent application of CPGs severely limits their use in clinical practice and the development of such methods is one of the grand challenges for clinical decision support. The proposed method responds to this challenge. We introduce and formally define logical models of CPGs and other related concepts, and develop the mitigation algorithm that operates on these concepts. In the algorithm we combine domain knowledge encoded as interaction and revision operators using the constraint logic programming (CLP) paradigm. The operators characterize adverse interactions and describe revisions to logical models required to address these interactions, while CLP allows us to efficiently solve the logical models - a solution represents a feasible therapy that may be safely applied to a patient. The mitigation algorithm accepts two CPGs and available (likely incomplete) patient information. It reports whether mitigation has been successful or not, and on success it gives a feasible therapy and points at identified interactions (if any) together with the revisions that address them. Thus, we consider the mitigation algorithm as an alerting tool to support a physician in the concurrent application of CPGs that can be implemented as a component of a clinical decision support system. We illustrate our method in the context of two clinical scenarios involving a patient with duodenal ulcer who experiences an episode of transient ischemic attack.


Assuntos
Algoritmos , Sistemas de Apoio a Decisões Clínicas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Guias de Prática Clínica como Assunto , Doença Aguda , Doença Crônica , Comorbidade , Interações Medicamentosas , Humanos , Modelos Biológicos
15.
Artif Intell Med ; 140: 102550, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37210156

RESUMO

Clinical practice guidelines (CPGs) are patient management tools that synthesize medical knowledge into an actionable format. CPGs are disease specific with limited applicability to the management of complex patients suffering from multimorbidity. For the management of these patients, CPGs need to be augmented with secondary medical knowledge coming from a variety of knowledge repositories. The operationalization of this knowledge is key to increasing CPGs' uptake in clinical practice. In this work, we propose an approach to operationalizing secondary medical knowledge inspired by graph rewriting. We assume that the CPGs can be represented as task network models, and provide an approach for representing and applying codified medical knowledge to a specific patient encounter. We formally define revisions that model and mitigate adverse interactions between CPGs and we use a vocabulary of terms to instantiate these revisions. We demonstrate the application of our approach using synthetic and clinical examples. We conclude by identifying areas for future work with the vision of developing a theory of mitigation that will facilitate the development of comprehensive decision support for the management of multimorbid patients.


Assuntos
Multimorbidade , Guias de Prática Clínica como Assunto , Humanos , Interações Medicamentosas
16.
AMIA Jt Summits Transl Sci Proc ; 2023: 360-369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350929

RESUMO

The evidence is growing that machine and deep learning methods can learn the subtle differences between the language produced by people with various forms of cognitive impairment such as dementia and cognitively healthy individuals. Valuable public data repositories such as TalkBank have made it possible for researchers in the computational community to join forces and learn from each other to make significant advances in this area. However, due to variability in approaches and data selection strategies used by various researchers, results obtained by different groups have been difficult to compare directly. In this paper, we present TRESTLE (Toolkit for Reproducible Execution of Speech Text and Language Experiments), an open source platform that focuses on two datasets from the TalkBank repository with dementia detection as an illustrative domain. Successfully deployed in the hackallenge (Hackathon/Challenge) of the International Workshop on Health Intelligence at AAAI 2022, TRESTLE provides a precise digital blueprint of the data pre-processing and selection strategies that can be reused via TRESTLE by other researchers seeking comparable results with their peers and current state-of-the-art (SOTA) approaches.

17.
Soc Neurosci ; 17(5): 414-427, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36196662

RESUMO

Poor social functioning is an emerging public health problem associated with physical and mental health consequences. Developing prognostic tools is critical to identify individuals at risk for poor social functioning and guide interventions. We aimed to inform prediction models of social functioning by evaluating models relying on bio-behavioral data using machine learning. With data from the Human Connectome Project Healthy Young Adult sample (age 22-35, N = 1,101), we built Support Vector Regression models to estimate social functioning from variable sets of brain morphology to behavior with increasing complexity: 1) brain-only model, 2) brain-cognition model, 3) cognition-behavioral model, and 4) combined brain-cognition-behavioral model. Predictive accuracy of each model was assessed and the importance of individual variables for model performance was determined. The combined and cognition-behavioral models significantly predicted social functioning, whereas the brain-only and brain-cognition models did not. Negative affect, psychological wellbeing, extraversion, withdrawal, and cortical thickness of the rostral middle-frontal and superior-temporal regions were the most important predictors in the combined model. Results demonstrate that social functioning can be accurately predicted using machine learning methods. Behavioral markers may be more significant predictors of social functioning than brain measures for healthy young adults and may represent important leverage points for preventative intervention.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Adulto Jovem , Humanos , Adulto , Imageamento por Ressonância Magnética/métodos , Interação Social , Aprendizado de Máquina , Encéfalo/diagnóstico por imagem , Cognição
18.
Exp Biol Med (Maywood) ; 247(22): 1969-1971, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36426683

RESUMO

This editorial article aims to highlight advances in artificial intelligence (AI) technologies in five areas: Collaborative AI, Multimodal AI, Human-Centered AI, Equitable AI, and Ethical and Value-based AI in order to cope with future complex socioeconomic and public health issues.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Atenção à Saúde , Previsões
19.
Int J Nurs Stud ; 127: 104153, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35092870

RESUMO

BACKGROUND: Research on technologies based on artificial intelligence in healthcare has increased during the last decade, with applications showing great potential in assisting and improving care. However, introducing these technologies into nursing can raise concerns related to data bias in the context of training algorithms and potential implications for certain populations. Little evidence exists in the extant literature regarding the efficacious application of many artificial intelligence -based health technologies used in healthcare. OBJECTIVES: To synthesize currently available state-of the-art research in artificial intelligence -based technologies applied in nursing practice. DESIGN: Scoping review METHODS: PubMed, CINAHL, Web of Science and IEEE Xplore were searched for relevant articles with queries that combine names and terms related to nursing, artificial intelligence and machine learning methods. Included studies focused on developing or validating artificial intelligence -based technologies with a clear description of their impacts on nursing. We excluded non-experimental studies and research targeted at robotics, nursing management and technologies used in nursing research and education. RESULTS: A total of 7610 articles published between January 2010 and March 2021 were revealed, with 93 articles included in this review. Most studies explored the technology development (n = 55, 59.1%) and formation (testing) (n = 28, 30.1%) phases, followed by implementation (n = 9, 9.7%) and operational (n = 1, 1.1%) phases. The vast majority (73.1%) of studies provided evidence with a descriptive design (level VI) while only a small portion (4.3%) were randomised controlled trials (level II). The study aims, settings and methods were poorly described in the articles, and discussion of ethical considerations were lacking in 36.6% of studies. Additionally, one-third of papers (33.3%) were reported without the involvement of nurses. CONCLUSIONS: Contemporary research on applications of artificial intelligence -based technologies in nursing mainly cover the earlier stages of technology development, leaving scarce evidence of the impact of these technologies and implementation aspects into practice. The content of research reported is varied. Therefore, guidelines on research reporting and implementing artificial intelligence -based technologies in nursing are needed. Furthermore, integrating basic knowledge of artificial intelligence -related technologies and their applications in nursing education is imperative, and interventions to increase the inclusion of nurses throughout the technology research and development process is needed.


Assuntos
Inteligência Artificial , Educação em Enfermagem , Algoritmos , Atenção à Saúde , Humanos , Tecnologia
20.
Artif Intell Med ; 112: 102002, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33581823

RESUMO

As the population ages, patients' complexity and the scope of their care is increasing. Over 60% of the population is 65 years of age or older and suffers from multi-morbidity, which is associated with two times as many patient-physician encounters. Yet clinical practice guidelines (CPGs) are developed to treat a single disease. To reconcile these two competing issues, previously we developed a framework for mitigation, i.e., identifying and addressing adverse interactions in multi-morbid patients managed according to multiple CPGs. That framework relies on first-order logic (FOL) to represent CPGs and secondary medical knowledge and FOL theorem proving to establish valid patient management plans. In the work presented here, we leverage our earlier research and simplify the mitigation process by representing it as a planning problem using the Planning Domain Definition Language (PDDL). This new framework, called MitPlan, identifies and addresses adverse interactions using durative planning actions that embody clinical actions (including medication administration and patient testing), supports a physician-defined length of planning horizons, and optimizes plans based on patient preferences and action costs. It supports a variety of criteria when developing management plans, including the total cost of prescribed treatment and the cost of the revisions to be introduced. The solution to MitPlan's planning problem is a sequence of timed actions that are easy to interpret when creating a management plan. We demonstrate MitPlan's capabilities using illustrative and clinical case studies.


Assuntos
Planejamento de Assistência ao Paciente , Preferência do Paciente , Guias de Prática Clínica como Assunto , Idoso , Interações Medicamentosas , Humanos , Lógica , Multimorbidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA