Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Neurol ; 73(3-4): 238-246, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25824054

RESUMO

BACKGROUND: Collectively, research on the role of B-cells in the pathogenesis of multiple sclerosis (MS) illustrates how translational medicine has given rise to promising therapeutic approaches for one of the most debilitating chronic neurological diseases in young adults. First described in 1935, the experimental autoimmune/allergic encephalomyelitis model is a key animal model that has provided the foundation for important developments in targeted therapeutics. SUMMARY: While additional B-cell therapies for MS are presently being developed by the pharmaceutical industry, much remains to be understood about the role played by B-cells in MS. The goal of this review is to summarize how B-cells may contribute to MS pathogenesis and thereby provide a basis for understanding why B-cell depletion is so effective in the treatment of this disease. Key Messages: B-cells are key players in the pathogenesis of MS, and their depletion via B-cell-targeted therapy ameliorates disease activity. CLINICAL IMPLICATIONS: In 2008, data from the first CD20-targeting B-cell depleting therapeutic trials using rituximab in MS were published. Since then, there has been a large body of evidence demonstrating the effectiveness of B-cell depletion mediated via anti-CD20 antibodies. Intense research efforts focusing on the immunopathological relevance of B-cells has gained significant momentum and given rise to a constellation of promising therapeutic agents for this complex B-cell-driven disease, including novel anti-CD20 antibodies, as well as agents targeting CD19 and BAFF-R.


Assuntos
Linfócitos B/imunologia , Esclerose Múltipla/imunologia , Adulto , Animais , Humanos , Fatores Imunológicos/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Rituximab/uso terapêutico , Adulto Jovem
2.
JCI Insight ; 2(22)2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29202449

RESUMO

A role of B cells in multiple sclerosis (MS) is well established, but there is limited understanding of their involvement during active disease. Here, we examined cerebrospinal fluid (CSF) and peripheral blood (PB) B cells in treatment-naive patients with MS or high-risk clinically isolated syndrome. Using flow cytometry, we found increased CSF lymphocytes with a disproportionate increase of B cells compared with T cells in patients with gadolinium-enhancing (Gd+) lesions on brain MRI. Ig gene heavy chain variable region (Ig-VH) repertoire sequencing of CSF and PB B cells revealed clonal relationships between intrathecal and peripheral B cell populations, which could be consistent with migration of B cells to and activation in the CNS in active MS. In addition, we found evidence for bystander immigration of B cells from the periphery, which could be supported by a CXCL13 gradient between CSF and blood. Understanding what triggers B cells to migrate and home to the CNS may ultimately aid in the rational selection of therapeutic strategies to limit progression in MS.


Assuntos
Linfócitos B/imunologia , Líquido Cefalorraquidiano/imunologia , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/imunologia , Adulto , Antígenos CD19 , Encéfalo/diagnóstico por imagem , Quimiocina CXCL13 , Feminino , Citometria de Fluxo , Gadolínio/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Linfócitos T , Adulto Jovem
3.
PLoS One ; 8(3): e58630, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484043

RESUMO

Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200 × g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols.


Assuntos
Bentonita/química , Príons/química , Príons/patogenicidade , Solo/análise , Adsorção , Animais , Bioensaio , Western Blotting , Química Encefálica , Colorado , Imuno-Histoquímica , Dose Letal Mediana , Camundongos , Dióxido de Silício
4.
J Vis Exp ; (45)2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21113122

RESUMO

Presence of an abnormal form a host-encoded prion protein (PrPC) that is protease resistant, pathologic and infectious characterizes prion diseases such as Chronic Wasting Disease (CWD) of cervids and scrapie in sheep. The Prion hypothesis asserts that this abnormal conformer constitutes most or all of the infectious prion. The role of the immune system in early events in peripheral prion pathogenesis has been convincingly demonstrated for CWD and scrapie. Transgenic and pharmacologic studies in mice revealed an important role of the Complement system in retaining and replicating prions early after infection. In vitro and in vivo studies have also observed prion retention by dendritic cells, although their role in trafficking remains unclear. Macrophages have similarly been implicated in early prion pathogenesis, but these studies have focused on events occurring weeks after infection. These prior studies also suffer from the problem of differentiating between endogenous PrP(C) and infectious prions. Here we describe a semiquantitative, unbiased approach for assessing prion uptake and trafficking from the inoculation site by immune cells recruited there. Aggregated prion rods were purified from infected brain homogenate by detergent solubilization of non-aggregated proteins and ultracentrifugation through a sucrose cushion. Polyacrylamide gel electrophoresis, coomassie blue staining and western blotting confirmed recovery of highly enriched prion rods in the pelleted fraction. Prion rods were fluorochrome-labeled then injected intraperitoneally into mice. Two hours later immune cells from peritoneal lavage fluid, spleen and mediastinal and mesenteric lymph nodes were assayed for prion rod retention and cell subsets identified by multicolor flow cytometry using markers for monocytes, neutrophils, dendritic cells, macrophages and B and T cells. This assay allows for the first time direct monitoring of immune cells acquiring and trafficking prions in vivo within hours after infection. This assay also clearly differentiates infectious, aggregated prions from PrPC normally expressed on host cells, which can be difficult and lead to data interpretation problems in other assay systems. This protocol can be adapted to other inoculation routes (oral, intravenous, intranervous and subcutaneous, e.g.) and antigens (conjugated beads, bacterial, viral and parasitic pathogens and proteins, egg) as well.


Assuntos
Encefalopatias/imunologia , Sistema Imunitário/fisiologia , Monitorização Imunológica/métodos , Proteínas PrPC/imunologia , Doenças Priônicas/imunologia , Animais , Linfócitos B/imunologia , Células Dendríticas/imunologia , Citometria de Fluxo/métodos , Imunidade Celular , Macrófagos/imunologia , Camundongos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA