RESUMO
The Wnt/ß-catenin signaling pathway plays essential roles in embryonic development and adult tissue homeostasis. Axin is a concentration-limiting factor responsible for the formation of the ß-catenin destruction complex. Wnt signaling itself promotes the degradation of Axin. However, the underlying molecular mechanism and biological relevance of this targeting of Axin have not been elucidated. Here, we identify SIAH1/2 (SIAH) as the E3 ligase mediating Wnt-induced Axin degradation. SIAH proteins promote the ubiquitination and proteasomal degradation of Axin through interacting with a VxP motif in the GSK3-binding domain of Axin, and this function of SIAH is counteracted by GSK3 binding to Axin. Structural analysis reveals that the Axin segment responsible for SIAH binding is also involved in GSK3 binding but adopts distinct conformations in Axin/SIAH and Axin/GSK3 complexes. Knockout of SIAH1 blocks Wnt-induced Axin ubiquitination and attenuates Wnt-induced ß-catenin stabilization. Our data suggest that Wnt-induced dissociation of the Axin/GSK3 complex allows SIAH to interact with Axin not associated with GSK3 and promote its degradation and that SIAH-mediated Axin degradation represents an important feed-forward mechanism to achieve sustained Wnt/ß-catenin signaling.
Assuntos
Proteína Axina/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Proteína Axina/química , Proteína Axina/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Conformação Proteica , Proteólise , Homologia de Sequência , Células Tumorais Cultivadas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismoRESUMO
TGF-ß signaling is a therapeutic target in advanced cancers. We identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as a key component mediating pro-oncogenic TGF-ß-induced SMAD and non-SMAD signaling. Upon TGF-ß stimulation, TRAF4 is recruited to the active TGF-ß receptor complex, where it antagonizes E3 ligase SMURF2 and facilitates the recruitment of deubiquitinase USP15 to the TGF-ß type I receptor (TßRI). Both processes contribute to TßRI stabilization on the plasma membrane and thereby enhance TGF-ß signaling. In addition, the TGF-ß receptor-TRAF4 interaction triggers Lys 63-linked TRAF4 polyubiquitylation and subsequent activation of the TGF-ß-activated kinase (TAK)1. TRAF4 is required for efficient TGF-ß-induced migration, epithelial-to-mesenchymal transition, and breast cancer metastasis. Elevated TRAF4 expression correlated with increased levels of phosphorylated SMAD2 and phosphorylated TAK1 as well as poor prognosis among breast cancer patients. Our results demonstrate that TRAF4 can regulate the TGF-ß pathway and is a key determinant in breast cancer pathogenesis.
Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator 4 Associado a Receptor de TNF/genética , Fator 4 Associado a Receptor de TNF/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Fosforilação , Poliubiquitina/metabolismo , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Ubiquitina-Proteína Ligases/metabolismoRESUMO
TGF-ß members are of key importance during embryogenesis and tissue homeostasis. Smad7 is a potent antagonist of TGF-ß family/Smad-mediated responses, but the regulation of Smad7 activity is not well understood. We identified the RING domain-containing E3 ligase RNF12 as a critical component of TGF-ß signaling. Depletion of RNF12 dramatically reduced TGF-ß/Smad-induced effects in mammalian cells, whereas ectopic expression of RNF12 strongly enhanced these responses. RNF12 specifically binds to Smad7 and induces its polyubiquitination and degradation. Smad7 levels were increased in RNF12-deficient mouse embryonic stem cells, resulting in mitigation of both BMP-mediated repression of neural induction and activin-induced anterior mesoderm formation. RNF12 also antagonized Smad7 during Nodal-dependent and BMP-dependent signaling and morphogenic events in early zebrafish embryos. The gastrulation defects induced by ectopic and depleted Smad7 were rescued in part by RNF12 gain and loss of function, respectively. These findings demonstrate that RNF12 plays a critical role in TGF-ß family signaling.
Assuntos
Embrião não Mamífero/citologia , Células-Tronco Embrionárias/citologia , Proteína Smad7/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Diferenciação Celular/genética , Embrião não Mamífero/metabolismo , Células-Tronco Embrionárias/metabolismo , Gastrulação/genética , Humanos , Células Jurkat , Camundongos , Proteólise , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Peixe-Zebra/genéticaRESUMO
R-spondin proteins strongly potentiate Wnt signalling and function as stem-cell growth factors. Despite the biological and therapeutic significance, the molecular mechanism of R-spondin action remains unclear. Here we show that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling. ZNRF3 is associated with the Wnt receptor complex, and inhibits Wnt signalling by promoting the turnover of frizzled and LRP6. Inhibition of ZNRF3 enhances Wnt/ß-catenin signalling and disrupts Wnt/planar cell polarity signalling in vivo. Notably, R-spondin mimics ZNRF3 inhibition by increasing the membrane level of Wnt receptors. Mechanistically, R-spondin interacts with the extracellular domain of ZNRF3 and induces the association between ZNRF3 and LGR4, which results in membrane clearance of ZNRF3. These data suggest that R-spondin enhances Wnt signalling by inhibiting ZNRF3. Our study provides new mechanistic insights into the regulation of Wnt receptor turnover, and reveals ZNRF3 as a tractable target for therapeutic exploration.
Assuntos
Receptores Wnt/metabolismo , Trombospondinas/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Animais , Polaridade Celular/fisiologia , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Feminino , Receptores Frizzled/metabolismo , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Via de Sinalização Wnt , Xenopus , Peixe-Zebra , beta Catenina/metabolismoRESUMO
Defects in epigenetic regulation play a fundamental role in the development of cancer, and epigenetic regulators have recently emerged as promising therapeutic candidates. We therefore set out to systematically interrogate epigenetic cancer dependencies by screening an epigenome-focused deep-coverage design shRNA (DECODER) library across 58 cancer cell lines. This screen identified BRM/SMARCA2, a DNA-dependent ATPase of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex, as being essential for the growth of tumor cells that harbor loss of function mutations in BRG1/SMARCA4. Depletion of BRM in BRG1-deficient cancer cells leads to a cell cycle arrest, induction of senescence, and increased levels of global H3K9me3. We further demonstrate the selective dependency of BRG1-mutant tumors on BRM in vivo. Genetic alterations of the mSWI/SNF chromatin remodeling complexes are the most frequent among chromatin regulators in cancers, with BRG1/SMARCA4 mutations occurring in â¼10-15% of lung adenocarcinomas. Our findings position BRM as an attractive therapeutic target for BRG1 mutated cancers. Because BRG1 and BRM function as mutually exclusive catalytic subunits of the mSWI/SNF complex, we propose that such synthetic lethality may be explained by paralog insufficiency, in which loss of one family member unveils critical dependence on paralogous subunits. This concept of "cancer-selective paralog dependency" may provide a more general strategy for targeting other tumor suppressor lesions/complexes with paralogous subunits.
Assuntos
DNA Helicases/deficiência , Epigênese Genética/fisiologia , Complexos Multiproteicos/genética , Neoplasias/genética , Proteínas Nucleares/deficiência , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Western Blotting , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Senescência Celular/genética , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Histonas/metabolismo , Humanos , Imunoprecipitação , Complexos Multiproteicos/metabolismo , RNA Interferente Pequeno/genética , Fatores de Transcrição/metabolismoRESUMO
The stability of the Wnt pathway transcription factor beta-catenin is tightly regulated by the multi-subunit destruction complex. Deregulated Wnt pathway activity has been implicated in many cancers, making this pathway an attractive target for anticancer therapies. However, the development of targeted Wnt pathway inhibitors has been hampered by the limited number of pathway components that are amenable to small molecule inhibition. Here, we used a chemical genetic screen to identify a small molecule, XAV939, which selectively inhibits beta-catenin-mediated transcription. XAV939 stimulates beta-catenin degradation by stabilizing axin, the concentration-limiting component of the destruction complex. Using a quantitative chemical proteomic approach, we discovered that XAV939 stabilizes axin by inhibiting the poly-ADP-ribosylating enzymes tankyrase 1 and tankyrase 2. Both tankyrase isoforms interact with a highly conserved domain of axin and stimulate its degradation through the ubiquitin-proteasome pathway. Thus, our study provides new mechanistic insights into the regulation of axin protein homeostasis and presents new avenues for targeted Wnt pathway therapies.
Assuntos
Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tanquirases/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , Proteína Axina , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteômica , Proteínas Repressoras/química , Tanquirases/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitinação , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismoRESUMO
Non-alcoholic fatty liver disease (NAFLD) - characterized by excess accumulation of fat in the liver - now affects one third of the world's population. As NAFLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply-characterized cohort of patients spanning the full histopathologic spectrum of NAFLD. CRISPR-based genetic knockout of the top 100 TFs identified ZNF469 as a regulator of collagen expression in primary human hepatic stellate cells (HSCs). Gain- and loss-of-function studies established that ZNF469 regulates collagen genes and genes involved in matrix homeostasis through direct binding to gene bodies and regulatory elements. By integrating multiomic large-scale profiling of human biopsies with extensive experimental validation we demonstrate that ZNF469 is a transcriptional regulator of collagen in HSCs. Overall, these data nominate ZNF469 as a previously unrecognized determinant of NAFLD-associated liver fibrosis.
RESUMO
Inflammatory cytokines like TNF play a central role in autoimmune disorders such as rheumatoid arthritis. We identified the tyrosine kinase bone marrow kinase on chromosome X (BMX) as an essential component of a shared inflammatory signaling pathway. Transient depletion of BMX strongly reduced secretion of IL-8 in cell lines and primary human cells stimulated by TNF, IL-1ß, or TLR agonists. BMX was required for phosphorylation of p38 MAPK and JNK, as well as activation of NF-κB. The following epistasis analysis indicated that BMX acts downstream of or at the same level as the complex TGF-ß activated kinase 1 (TAK1)-TAK1 binding protein. At the cellular level, regulation of the IL-8 promoter required the pleckstrin homology domain of BMX, which could be replaced by an ectopic myristylation signal, indicating a requirement for BMX membrane association. In addition, activation of the IL-8 promoter by in vitro BMX overexpression required its catalytic activity. Genetic ablation of BMX conferred protection in the mouse arthritis model of passive K/BxN serum transfer, confirming that BMX is an essential mediator of inflammation in vivo. However, genetic replacement with a catalytically inactive BMX allele was not protective in the same arthritis animal model. We conclude that BMX is an essential component of inflammatory cytokine signaling and that catalytic, as well as noncatalytic functions of BMX are involved.
Assuntos
Artrite/imunologia , Proteínas Tirosina Quinases/metabolismo , Animais , Artrite/metabolismo , Proteínas Sanguíneas , Linhagem Celular , Modelos Animais de Doenças , Células HeLa , Humanos , Immunoblotting , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , NF-kappa B/metabolismo , Fosfoproteínas , Fosforilação , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Necrose Tumoral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Redirecting E3 ligases to neo-substrates, leading to their proteasomal disassembly, known as targeted protein degradation (TPD), has emerged as a promising alternative to traditional, occupancy-driven pharmacology. Although the field has expanded tremendously over the past years, the choice of E3 ligases remains limited, with an almost exclusive focus on CRBN and VHL. Here, we report the discovery of novel ligands to the PRY-SPRY domain of TRIM58, a RING ligase that is specifically expressed in erythroid precursor cells. A DSF screen, followed by validation using additional biophysical methods, led to the identification of TRIM58 ligand TRIM-473. A basic SAR around the chemotype was established by utilizing a competitive binding assay employing a short FP peptide probe derived from an endogenous TRIM58 substrate. The X-ray co-crystal structure of TRIM58 in complex with TRIM-473 gave insights into the binding mode and potential exit vectors for bifunctional degrader design.
RESUMO
Host factor pathways are known to be essential for hepatitis C virus (HCV) infection and replication in human liver cells. To search for novel host factor proteins required for HCV replication, we screened a subgenomic genotype 1b replicon cell line (Luc-1b) with a kinome and druggable collection of 20,779 siRNAs. We identified and validated several enzymes required for HCV replication, including class III phosphatidylinositol 4-kinases (PI4KA and PI4KB), carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and mevalonate (diphospho) decarboxylase. Knockdown of PI4KA could inhibit the replication and/or HCV RNA levels of the two subgenomic genotype 1b clones (SG-1b and Luc-1b), two subgenomic genotype 1a clones (SG-1a and Luc-1a), JFH-1 genotype 2a infectious virus (JFH1-2a), and the genomic genotype 1a (FL-1a) replicon. In contrast, PI4KB knockdown inhibited replication and/or HCV RNA levels of Luc-1b, SG-1b, and Luc-1a replicons. The small molecule inhibitor, PIK93, was found to block subgenomic genotype 1b (Luc-1b), subgenomic genotype 1a (Luc-1a), and genomic genotype 2a (JFH1-2a) infectious virus replication in the nanomolar range. PIK93 was characterized by using quantitative chemical proteomics and in vitro biochemical assays to demonstrate PIK93 is a bone fide PI4KA and PI4KB inhibitor. Our data demonstrate that genetic or pharmacological modulation of PI4KA and PI4KB inhibits multiple genotypes of HCV and represents a novel druggable class of therapeutic targets for HCV infection.
Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Fígado/virologia , Replicação Viral , 1-Fosfatidilinositol 4-Quinase/química , Antivirais/farmacologia , Ligação Competitiva , Linhagem Celular , Inativação Gênica , Genótipo , Humanos , Concentração Inibidora 50 , Espectrometria de Massas/métodos , Proteômica/métodos , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiazóis/farmacologiaRESUMO
The largest gene knock-down experiments performed to date have used multiple short interfering/short hairpin (si/sh)RNAs per gene. To overcome this burden for design of a genome-wide siRNA library, we used the Stuttgart Neural Net Simulator to train algorithms on a data set of 2,182 randomly selected siRNAs targeted to 34 mRNA species, assayed through a high-throughput fluorescent reporter gene system. The algorithm, (BIOPREDsi), reliably predicted activity of 249 siRNAs of an independent test set (Pearson coefficient r = 0.66) and siRNAs targeting endogenous genes at mRNA and protein levels. Neural networks trained on a complementary 21-nucleotide (nt) guide sequence were superior to those trained on a 19-nt sequence. BIOPREDsi was used in the design of a genome-wide siRNA collection with two potent siRNAs per gene. When this collection of 50,000 siRNAs was used to identify genes involved in the cellular response to hypoxia, two of the most potent hits were the key hypoxia transcription factors HIF1A and ARNT.
Assuntos
Algoritmos , Inativação Gênica , Modelos Genéticos , Rede Nervosa , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Sequência de Bases , Simulação por Computador , Desenho Assistido por Computador , Biblioteca Gênica , Modelos Estatísticos , Dados de Sequência MolecularRESUMO
CRISPR/Cas9 mediated gene editing of patient-derived hematopoietic stem and progenitor cells (HSPCs) ex vivo followed by autologous transplantation of the edited HSPCs back to the patient can provide a potential cure for monogenic blood disorders such as ß-hemoglobinopathies. One challenge for this strategy is efficient delivery of the ribonucleoprotein (RNP) complex, consisting of purified Cas9 protein and guide RNA, into HSPCs. Because ß-hemoglobinopathies are most prevalent in developing countries, it is desirable to have a reliable, efficient, easy-to-use and cost effective delivery method. With this goal in mind, we developed TRansmembrane Internalization Assisted by Membrane Filtration (TRIAMF), a new method to quickly and effectively deliver RNPs into HSPCs by passing a RNP and cell mixture through a filter membrane. We achieved robust gene editing in HSPCs using TRIAMF and demonstrated that the multilineage colony forming capacities and the competence for engraftment in immunocompromised mice of HSPCs were preserved post TRIAMF treatment. TRIAMF is a custom designed system using inexpensive components and has the capacity to process HSPCs at clinical scale.
Assuntos
Hemoglobina Fetal/genética , Filtração/métodos , Edição de Genes/métodos , Transplante de Células-Tronco Hematopoéticas , Ribonucleoproteínas/genética , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Eletroporação/métodos , Feminino , Hemoglobina Fetal/metabolismo , Filtração/economia , Filtração/instrumentação , Terapia Genética/economia , Terapia Genética/instrumentação , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Humanos , Membranas Artificiais , Camundongos , Modelos Animais , RNA Guia de Cinetoplastídeos/genética , Transplante AutólogoRESUMO
SQSTM1 is an adaptor protein that integrates multiple cellular signaling pathways and whose expression is tightly regulated at the transcriptional and post-translational level. Here, we describe a forward genetic screening paradigm exploiting CRISPR-mediated genome editing coupled to a cell selection step by FACS to identify regulators of SQSTM1. Through systematic comparison of pooled libraries, we show that CRISPR is superior to RNAi in identifying known SQSTM1 modulators. A genome-wide CRISPR screen exposed MTOR signalling and the entire macroautophagy machinery as key regulators of SQSTM1 and identified several novel modulators including HNRNPM, SLC39A14, SRRD, PGK1 and the ufmylation cascade. We show that ufmylation regulates SQSTM1 by eliciting a cell type-specific ER stress response which induces SQSTM1 expression and results in its accumulation in the cytosol. This study validates pooled CRISPR screening as a powerful method to map the repertoire of cellular pathways that regulate the fate of an individual target protein.
Assuntos
Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteína Sequestossoma-1/metabolismo , Autofagia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citometria de Fluxo , Marcação de Genes , Testes Genéticos , Humanos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismoRESUMO
5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.
Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metionina/metabolismo , Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Desoxiadenosinas/metabolismo , Deleção de Genes , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína-Arginina N-Metiltransferases/genética , Purina-Núcleosídeo Fosforilase/genética , RNA Interferente Pequeno/genética , Tionucleosídeos/metabolismoRESUMO
The stability and membrane localization of the transforming growth factor-ß (TGF-ß) type I receptor (TßRI) determines the levels of TGF-ß signalling. TßRI is targeted for ubiquitylation-mediated degradation by the SMAD7-SMURF2 complex. Here we performed a genome-wide gain-of-function screen and identified ubiquitin-specific protease (USP) 4 as a strong inducer of TGF-ß signalling. USP4 was found to directly interact with TßRI and act as a deubiquitylating enzyme, thereby controlling TßRI levels at the plasma membrane. Depletion of USP4 mitigates TGF-ß-induced epithelial to mesenchymal transition and metastasis. Importantly, AKT (also known as protein kinase B), which has been associated with poor prognosis in breast cancer, directly associates with and phosphorylates USP4. AKT-mediated phosphorylation relocates nuclear USP4 to the cytoplasm and membrane and is required for maintaining its protein stability. Moreover, AKT-induced breast cancer cell migration was inhibited by USP4 depletion and TßRI kinase inhibition. Our results uncover USP4 as an important determinant for crosstalk between TGF-ß and AKT signalling pathways.
Assuntos
Neoplasias da Mama/enzimologia , Membrana Celular/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Estabilidade Enzimática , Transição Epitelial-Mesenquimal , Feminino , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Mutação , Invasividade Neoplásica , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas Proto-Oncogênicas , Interferência de RNA , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina , Ubiquitinação , Peixe-Zebra/embriologiaRESUMO
The Wnt/ß-catenin signalling pathway plays essential roles in embryonic development and adult tissue homeostasis, and deregulation of this pathway has been linked to cancer. Axin is a concentration-limiting component of the ß-catenin destruction complex, and its stability is regulated by tankyrase. However, the molecular mechanism by which tankyrase-dependent poly(ADP-ribosyl)ation (PARsylation) is coupled to ubiquitylation and degradation of axin remains undefined. Here, we identify RNF146, a RING-domain E3 ubiquitin ligase, as a positive regulator of Wnt signalling. RNF146 promotes Wnt signalling by mediating tankyrase-dependent degradation of axin. Mechanistically, RNF146 directly interacts with poly(ADP-ribose) through its WWE domain, and promotes degradation of PARsylated proteins. Using proteomics approaches, we have identified BLZF1 and CASC3 as further substrates targeted by tankyrase and RNF146 for degradation. Thus, identification of RNF146 as a PARsylation-directed E3 ligase establishes a molecular paradigm that links tankyrase-dependent PARsylation to ubiquitylation. RNF146-dependent protein degradation may emerge as a major mechanism by which tankyrase exerts its function.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Wnt/metabolismo , Sequência de Aminoácidos , Animais , Proteína Axina , Humanos , Hidrólise , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases/químicaRESUMO
Three cyclophilin inhibitors (DEBIO-025, SCY635, and NIM811) are currently in clinical trials for hepatitis C therapy. The mechanism of action of these, however, is not completely understood. There are at least 16 cyclophilins expressed in human cells which are involved in a diverse set of cellular processes. Large-scale siRNA experiments, chemoproteomic assays with cyclophilin binding compounds, and mRNA profiling of HCV replicon containing cells were used to identify the cyclophilins that are instrumental to HCV replication. The previously reported cyclophilin A was confirmed and additional cyclophilin containing pathways were identified. Together, the experiments provide strong evidence that NIM811 reduces viral replication by inhibition of multiple cyclophilins and pathways with protein trafficking as the most strongly and persistently affected pathway.
Assuntos
Ciclofilinas/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Ciclosporina/química , Ciclosporina/farmacologia , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Modelos Biológicos , Estrutura Molecular , Proteoma/análise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismoRESUMO
BACKGROUND: Lipid metabolism in mammals is orchestrated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control the expression of genes required for the uptake and synthesis of cholesterol, fatty acids, and triglycerides. SREBPs are thus essential for insulin-induced lipogenesis and for cellular membrane homeostasis and biogenesis. Although multiple players have been identified that control the expression and activation of SREBPs, gaps remain in our understanding of how SREBPs are coordinated with other physiological pathways. METHODOLOGY: To identify novel regulators of SREBPs, we performed a genome-wide cDNA over-expression screen to identify proteins that might modulate the transcription of a luciferase gene driven from an SREBP-specific promoter. The results were verified through secondary biological assays and expression data were analyzed by a novel application of the Gene Set Enrichment Analysis (GSEA) method. CONCLUSIONS/SIGNIFICANCE: We screened 10,000 different cDNAs and identified a number of genes and pathways that have previously not been implicated in SREBP control and cellular cholesterol homeostasis. These findings further our understanding of lipid biology and should lead to new insights into lipid associated disorders.
Assuntos
Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Transcrição Gênica , Sequência de Bases , Linhagem Celular , Colesterol/metabolismo , DNA Complementar , Homeostase , Humanos , Regiões Promotoras Genéticas , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismoRESUMO
BACKGROUND: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase. RESULTS: Here we report the identification of genes that, when suppressed, result in structural defects in the mitotic spindle leading to bent, twisted, monopolar, or multipolar spindles, and cause cell cycle arrest. We further describe a novel analysis methodology for large-scale RNA interference datasets that relies on supervised clustering of these genes based on Gene Ontology, protein families, tissue expression, and protein-protein interactions. CONCLUSION: This approach was utilized to classify functionally the identified genes in discrete mitotic processes. We confirmed the identity for a subset of these genes and examined more closely their mechanical role in spindle architecture.
Assuntos
Genoma Humano , Mitose/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Humanos , Interferência de RNARESUMO
Human cells have evolved complex signaling networks to coordinate the cell cycle. A detailed understanding of the global regulation of this fundamental process requires comprehensive identification of the genes and pathways involved in the various stages of cell-cycle progression. To this end, we report a genome-wide analysis of the human cell cycle, cell size, and proliferation by targeting >95% of the protein-coding genes in the human genome using small interfering RNAs (siRNAs). Analysis of >2 million images, acquired by quantitative fluorescence microscopy, showed that depletion of 1,152 genes strongly affected cell-cycle progression. These genes clustered into eight distinct phenotypic categories based on phase of arrest, nuclear area, and nuclear morphology. Phase-specific networks were built by interrogating knowledge-based and physical interaction databases with identified genes. Genome-wide analysis of cell-cycle regulators revealed a number of kinase, phosphatase, and proteolytic proteins and also suggests that processes thought to regulate G(1)-S phase progression like receptor-mediated signaling, nutrient status, and translation also play important roles in the regulation of G(2)/M phase transition. Moreover, 15 genes that are integral to TNF/NF-kappaB signaling were found to regulate G(2)/M, a previously unanticipated role for this pathway. These analyses provide systems-level insight into both known and novel genes as well as pathways that regulate cell-cycle progression, a number of which may provide new therapeutic approaches for the treatment of cancer.