Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 5(19): 10857-10867, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455206

RESUMO

Quantitative proteomics has evolved considerably over the last decade with the advent of higher order multiplexing (HOM) techniques. With the development of methods such as-multitagging, cPILOT, hyperplexing, BONPlex, and MITNCAT, the HOM technique is rapidly taking the center stage in multiplexed quantitative proteomics. These studies combined MS1 and MS2 labels in a single experiment enabling higher sample throughput. While HOM is highly promising, the computational analysis is still a big challenge, as the available tools cannot harness its power completely. We have developed a new quantitative pipeline, HyperQuant to aid in accurately quantitating complex HOM data. The pipeline uses identification results from either MaxQuant or any other search engine and quantitation results from QuantWizIQ. The Mapper and Combiner modules of HyperQuant allow facile integration of the labeled data, along with peptide spectrum match (PSM) intensity/ratio integration for proteins, respectively, for each PSM label combination. This also includes appropriate combination of replicates/fractions before summarizing the protein intensity/ratio, leading to robust quantitation. To the best of our knowledge, this is the first tool for the quantitation of HOM data with flexibility for any combination of MS1 and MS2 labels. We demonstrate its utility in analyzing two 18-plex data sets from the hyperplexing and the BONplex studies. The tool is open source and freely available for noncommercial use. HyperQuant is a highly valuable tool that will help in advancing the field of multiplexed quantitative proteomics.

2.
Data Brief ; 25: 104082, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31245515

RESUMO

Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein involved in the signal transduction pathways. This dataset enlists proteins which interact with Grb2 in the presence and absence of a mitogenic stimulus. Grb2 expressing HEK293 cells were cultured in light and heavy labeled SILAC media. Normal lysine and arginine were incorporated as light labels while 8 and 10 Da heavier labels of respective isotopes were used for heavy labeling. While light labeled cells were used to enrich basal Grb2 interactome, the heavy labeled cells were stimulated in presence of epidermal growth factor (EGF) to investigate the altered Grb2 interactome dynamics. Equal number of EGF stimulated and non-stimulated cells was pooled, lysed and subjected to affinity purification coupled to mass spectrometry (AP-MS). The variety of Grb2 protein partners changed as a consequence of EGF stimulation. Additionally, SILAC labeling helped in quantitative estimation of altered association of a few interactors with the bait protein. Data are available via PRIDE repository with the dataset identifier PXD012957 (https://www.ebi.ac.uk/pride/archive/projects/PXD012957).

3.
Data Brief ; 17: 604-609, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29552609

RESUMO

The Rb protein is a tumor suppressor protein that regulates the key G1S checkpoint consequently blocking the progression of cell cycle into S-phase. Despite its pertinent role in cell cycle regulation, comprehensive information on its interacting partners across cell cycle progression is lacking. Here, we aim to submit a comprehensive set of Rb interactors as the cell progresses from G0 through G1 and S into G2 phase in HEK 293 cell line. Affinity purification of HA-tagged Rb protein along with its interactors was analyzed by mass spectrometry (AP-MS). SILAC labeling enabled differentiation of Rb interactors in different cell cycle stages as well as their quantification - G0 cells were labeled with light labels of lysine and arginine (K0R0), cells in G1S transition were labeled with heavy labels (K8R10) while the G2 cells were labeled with medium labels (K6R6). LC-MS/MS analysis resulted in 6 wiff files which were submitted to protein pilot software for peptide identification and quantification. Here we submit the dataset which clearly captures the changing interacting partners of the Rb protein as the cell cycle progressed from G0 through G1S checkpoint into G2 phase. Data is publicly available via ProteomeXchange with identifier PXD007708.

4.
Sci Rep ; 8(1): 1303, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358593

RESUMO

Cell growth and proliferation are two diverse processes yet always linked. Akt1, a serine/threonine kinase, is a multi-functional protein implicated in regulation of cell growth, survival and proliferation. Though it has a role in G1/S progression, the manner by which Akt1 controls cell cycle and blends cell growth with proliferation is not well explored. In this study, we characterize the Akt1 interactome as the cell cycle progresses from G0 to G1/S and G2 phase. For this, Akt1-overexpressing HEK293 cells were subjected to AP-MS. To distinguish between individual cell cycle stages, cells were cultured in the light, medium and heavy labelled SILAC media. We obtained 213 interacting partners of Akt1 from these studies. GO classification revealed that a significant number of proteins fall into functional classes related to cell growth or cell cycle processes. Of these, 32 proteins showed varying association with Akt1 in different cell cycle stages. Further analyses uncovered a subset of proteins showing counteracting effects so as to tune stage-specific progression through the cycle. Thus, our study provides some novel perspectives on Akt1-mediated regulation of the cell cycle and offers the framework for a detailed resolution of the downstream cellular mechanisms that are mediated by this kinase.


Assuntos
Ciclo Celular , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Proteoma/metabolismo
5.
Data Brief ; 11: 252-257, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28243621

RESUMO

Akt1 is a multi-functional protein implicated in key cellular processes including regulation of proliferation, survival, metabolism and protein synthesis. Its functional diversity results through interactions with other proteins which change with changing context. This study was designed to capture proteins, which interact with Akt1 as the cell cycle progresses from G0 to G1S and then G2 phase. Such an insight might help us understand the role of Akt1 in cell cycle, which as of now is not well explored. Akt1 expressing HEK 293 cells were cultured in light, medium and heavy labeled SILAC media. Normal lysine and arginine were incorporated as light labels; 6 Da (Dalton) heavier isotopes of the same amino acids were used as medium labels; while for heavy labeling the isotopes were 8 and 10 Da heavier. Light labeled cells were arrested in G0 phase while medium and heavy labeled cells were arrested in G2 and G1S phases, respectively. Equal number of cells from each phase was pooled, lysed and subjected to Affinity Purification coupled to Mass Spectroscopy (AP-MS). The obtained Akt1 protein partners were observed to change as the cell cycle progressed from G0 to G1S and then to G2 phase. Additionally, SILAC labeling aided in quantitative estimation of changing association of a number of proteins which were common to two or more phases, with Akt1. Data are available via ProteomeXchange with identifier PXD005557.

6.
Data Brief ; 9: 349-54, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27672675

RESUMO

Here we provide data for SILAC and iTRAQ based hyperplexing combined with BONCAT based click chemistry for selective enrichment of newly synthesized proteins secreted by THP1 macrophages at various time points after infection with four different strains of Mycobacterium tuberculosis. The macrophages were infected with H37Ra, H37Rv, BND433 and JAL2287 strains of M. tuberculosis. Newly-synthesized secreted host proteins were observed, starting from six hours post-infection till 26 h, at 4 h intervals. We have combined BONCAT with hyperplexing (18-plex), which blends SILAC and iTRAQ, for the first time. Two sets of triplex SILAC were used to encode the strains of M. tuberculosis - H37Ra & H37Rv in one and BND433 & JAL2287 in another with a control in each. BONCAT was used to enrich the secretome for newly synthesized proteins while 6-plex iTRAQ labeling was employed to quantify the temporal changes in the captured proteome. Each set of 18-plex was run in 4 MS replicates with two linear and two non-linear separation modes. This new variant of hyperplexing method, combining triplex SILAC with 6-plex iTRAQ, achieves 18-plex quantitation in a single MS run. Hyperplexing enables large scale spatio-temporal systems biology studies where large number of samples can be processed simultaneously and in quantitative manner. Data are available via ProteomeXchange with identifier ProteomeXchange: PXD004281.

7.
Sci Rep ; 5: 13430, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26303024

RESUMO

Upon infection, Mycobacterium tuberculosis (Mtb) deploys specialized secretion machinery to deliver virulent proteins with the capacity to modulate a variety of host-cellular pathways. Studies on the identification of intra-macrophage Mtb proteins, however, are constricted by an inability to selectively enrich these virulent effectors against overwhelming protein content of the host. Here, we introduce an Mtb-selective protein labeling method based on genetic incorporation of azidonorleucine (Anl) through the expression of a mutant methionyl-tRNA synthetase. Exclusive incorporation of Anl, into native Mtb proteins, provided a click handle to pull out low abundant secretory proteins from the lysates of infected cells. Further, temporal secretome profiling, upon infection with strains of varying degree of virulence, revealed the proficiency of virulent Mtb to secrete chaperones. This ability contributed at least partially to the mycobacterial virulence-specific suppression of ER stress in the host macrophage, representing an important facet of mycobacterial virulence. The Anl labeling approach should facilitate new exciting opportunities for imaging and proteomic investigations of differently virulent Mtb isolates to understand determinants of pathogenicity.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Macrófagos/química , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Humanos , Coloração e Rotulagem/métodos , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação
8.
Int J Proteomics ; 2015: 270438, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785198

RESUMO

Even though endoplasmic reticulum (ER) stress associated with mycobacterial infection has been well studied, the molecular basis of ER as a crucial organelle to determine the fate of Mtb is yet to be established. Here, we have studied the ability of Mtb to manipulate the ultrastructural architecture of macrophage ER and found that the ER-phenotypes associated with virulent (H37Rv) and avirulent (H37Ra) strains were different: a rough ER (RER) with the former against a smooth ER (SER) with the later. Further, the functional attributes of these changes were probed by MS-based quantitative proteomics (133 ER proteins) and lipidomics (8 phospholipids). Our omics approaches not only revealed the host pathogen cross-talk but also emphasized how precisely Mtb uses proteins and lipids in combination to give rise to characteristic ER-phenotypes. H37Ra-infected macrophages increased the cytosolic Ca(2+) levels by attenuating the ATP2A2 protein and simultaneous induction of PC/PE expression to facilitate apoptosis. However, H37Rv inhibited apoptosis and further controlled the expression of EST-1 and AMRP proteins to disturb cholesterol homeostasis resulting in sustained infection. This approach offers the potential to decipher the specific roles of ER in understanding the cell biology of mycobacterial infection with special reference to the impact of host response.

9.
Sci Rep ; 3: 1328, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23435464

RESUMO

To probe how the pathogen Mycobacterium tuberculosis controls host cellular death pathways, we compared mitochondrial responses in human macrophages infected either with the avirulent mycobacterial strain H37Ra, or its virulent counterpart H37Rv. Following H37Ra infection, induction of the apoptotic response was foreshadowed by the early suppression of stress-induced mitochondrial activity. In contrast, mitochondria in H37Rv-infected cells displayed robust activity with increased membrane potential and ATP synthesis. An examination of the mitochondrial proteome revealed that attenuation of mitochondrial function was also coupled with the vigorous activation of bactericidal mechanisms in H37Ra-infected cells. In contrast, augmentation of mitochondrial activity by H37Rv enabled manipulation of host cellular mechanisms to inhibit apoptosis on the one hand, while ensuring fortification against anti-microbial pathways on the other. These results thus provide novel insights into the molecular interplay that facilitates adaptation of virulent mycobacteria within the hostile intracellular milieu of the host macrophage.


Assuntos
Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/patogenicidade , Difosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Tomografia com Microscopia Eletrônica , Humanos , Macrófagos/microbiologia , Potencial da Membrana Mitocondrial , Mitocôndrias/ultraestrutura , Mycobacterium tuberculosis/classificação , Proteoma/metabolismo , Sorotipagem , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA