Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360672

RESUMO

Modular tissue engineering (MTE) is a novel "bottom-up" approach to create engineered biological tissues from microscale repeating units. Our aim was to obtain microtissue constructs, based on polymer microspheres (MSs) populated with cells, which can be further assembled into larger tissue blocks and used in bone MTE. Poly(L-lactide-co-glycolide) MS of 165 ± 47 µm in diameter were produced by oil-in-water emulsification and treated with 0.1 M NaOH. To improve cell adhesion, MSs were coated with poly-L-lysine (PLL) or human recombinant collagen type I (COL). The presence of oxygenated functionalities and PLL/COL coating on MS was confirmed by X-ray photoelectron spectroscopy (XPS). To assess the influence of medium composition on adhesion, proliferation, and osteogenic differentiation, preosteoblast MC3T3-E1 cells were cultured on MS in minimal essential medium (MEM) and osteogenic differentiation medium (OSG). Moreover, to assess the potential osteoblast-osteoclast cross-talk phenomenon and the influence of signaling molecules released by osteoclasts on osteoblast cell culture, a medium obtained from osteoclast culture (OSC) was also used. To impel the cells to adhere and grow on the MS, anti-adhesive cell culture plates were utilized. The results show that MS coated with PLL and COL significantly favor the adhesion and growth of MC3T3-E1 cells on days 1 and 7, respectively, in all experimental conditions tested. On day 7, three-dimensional MS/cell/extracellular matrix constructs were created owing to auto-assembly. The cells grown in such constructs exhibited high activity of early osteogenic differentiation marker, namely, alkaline phosphatase. Superior cell growth on PLL- and COL-coated MS on day 14 was observed in the OSG medium. Interestingly, deposition of extracellular matrix and its mineralization was particularly enhanced on COL-coated MS in OSG medium on day 14. In our study, we developed a method of spontaneous formation of organoid-like MS-based cell/ECM constructs with a few millimeters in size. Such constructs may be regarded as building blocks in bone MTE.


Assuntos
Osso e Ossos/citologia , Matriz Extracelular/química , Microesferas , Osteoblastos/citologia , Osteogênese , Polímeros/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Camundongos , Alicerces Teciduais/química
2.
Materials (Basel) ; 17(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203876

RESUMO

In the modern world, many products are disposable or have a very short lifespan, while at the same time, those products are made from materials that will remain in the environment in the form of waste for hundreds or even thousands of years. It is a serious problem; non-biodegradable polymer wastes are part of environmental pollution and generate microplastics, which accumulate in the organisms of living beings. One of the proposed solutions is biodegradable polymers and their composites. In our work, three types of polylactide-based composites with plant-derived fillers: microcellulose powder, short flax fibers, and wood flour at 2 wt.% were prepared. Poly(lactic acid) (PLA)-based biocomposite properties were characterized in terms of mechanical and surface properties together with microscopic analysis and Fourier-transform infrared spectroscopy (FTIR), before and after a UV (ultraviolet)-light-aging process to determine the effects of each cellulose-based additive on the UV-induced degradation process. This research shows that the addition of a cellulose additive can improve the properties of the material in terms of the UV-aging process, but the form of the chosen cellulose form plays a crucial role in this case. The testing of physicochemical properties demonstrated that not only can mechanical properties be improved, but also the time of degradation under UV light exposure can be controlled by the proper selection of the reinforcing phase and the parameters of the extrusion and injection molding process. The obtained results turned out to be very interesting, not only in terms of the cost reduction of the biocomposites themselves, as mainly the waste from the wood industry was used as a low-cost filler, but also that the additive delays the aging process occurring during UV light exposure. Even a small, 2 wt.% addition of some of the tested forms of cellulose delayed surface degradation, which is one of the most important factors affecting the biodegradation process.

3.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770248

RESUMO

Fluoride is one of the elements commonly present in the human environment. Due to its characteristics, it is very widely used in medicine, dentistry, industry or agriculture. On the other hand, its universality possesses a real threat to the human body in the form of acute and chronic poisoning. The aim of this paper is to characterize the properties of fluoride and its effects on the human body, as well as the sources of its occurrence. Particular emphasis is placed on the safety of its use and optimal dosage intake, which prevents accumulation and reduces its potential side effects. The positive effect of proper fluoride supply is widely described. In order to avoid overdose, it is best to consult a specialist to properly select the dosage.

4.
RSC Adv ; 11(39): 23908-23921, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479031

RESUMO

A novel way of obtaining highly porous cements is foaming them with the use of nonionic surface active agents (surfactants). In this study, foamed calcium phosphate cements (fCPCs) intended for in situ use were fabricated by a surfactant-assisted foaming process. Three different surface active agents, Tween 20, Tween 80 and Tetronic 90R4, were used. The amount of surfactant, based on its critical micelle concentration and cytotoxicity as well as foaming method, was determined. It has been established that in order to avoid cytotoxic effects the concentration of all applied surfactants in the cement liquid phases should not exceed 1.25 g L-1. It was found that Tetronic 90R4 had the lowest cytotoxicity whereas Tween 20 had the highest. The influence of the type of surfactant used in the fabrication process of bioactive macroporous cement on the physicochemical and biological properties of fCPCs was studied. The obtained materials reached higher than 50 vol% open porosity and possessed compressive strength which corresponds to the values for cancellous bone. The highest porosity and compressive strength was found for the material with the addition of Tween 80. In vitro investigations proved the chemical stability and high bioactive potential of the examined materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA