Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nano Lett ; 24(12): 3670-3677, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483128

RESUMO

Functionalization of metallic surfaces by molecular monolayers is a key process in fields such as nanophotonics or biotechnology. To strongly enhance light-matter interaction in such monolayers, nanoparticle-on-a-mirror (NPoM) cavities can be formed by placing metal nanoparticles on such chemically functionalized metallic monolayers. In this work, we present a novel functionalization process of gold surfaces using 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules, which can be used for upconversion from THz to visible frequencies. The synthesized surfaces and NPoM cavities are characterized by Raman spectroscopy, atomic force microscopy (AFM), and advancing-receding contact angle measurements. Moreover, we show that NPoM cavities can be efficiently integrated on a silicon-based photonic chip performing pump injection and Raman-signal extraction via silicon nitride waveguides. Our results open the way for the use of 5-A-2MBI monolayers in different applications, showing that NPoM cavities can be effectively integrated with photonic waveguides, enabling on-chip enhanced Raman spectroscopy or detection of infrared and THz radiation.

2.
Phys Rev Lett ; 122(20): 203901, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172774

RESUMO

Quantum emitters located in proximity to a metal nanostructure individually transfer their energy via near-field excitation of surface plasmons. The energy transfer process increases the spontaneous emission (SE) rate due to plasmon-enhanced local field. Here, we demonstrate a significant acceleration of the quantum emitter SE rate in a plasmonic nanocavity due to cooperative energy transfer (CET) from plasmon-correlated emitters. Using an integrated plasmonic nanocavity, we realize up to sixfold enhancement in the emission rate of emitters coupled to the same nanocavity on top of the plasmonic enhancement of the local density of states. The radiated power spectrum retains the plasmon resonance central frequency and line shape, with the peak amplitude proportional to the number of excited emitters indicating that the observed cooperative SE is distinct from superradiance. Plasmon-assisted CET offers unprecedented control over the SE rate and allows us to dynamically control the spontaneous emission rate at room temperature which can enable SE rate based optical modulators.

3.
Small ; 11(1): 134-40, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25131422

RESUMO

Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.


Assuntos
DNA/química , Interações Hidrofóbicas e Hidrofílicas , Nanotecnologia/métodos , Nanofios/química , DNA/ultraestrutura , Fluorescência , Ouro/química , Nanofios/ultraestrutura
4.
Langmuir ; 31(27): 7572-80, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26102092

RESUMO

Several diseases are related to the lack or to the defective activity of a particular enzyme; therefore, these proteins potentially represent a very interesting class of therapeutics. However, their application is hampered by their rapid degradation and immunogenic side effects. Most attempts to increase the bioavailability of therapeutic enzymes are based on formulations in which the protein is entrapped within a scaffold structure but needs to be released to exert its activity. In this work, an alternative method will be described, designed to keep the enzyme in its active form inside a nanoparticle (NP) without the need to release it, thus maintaining the protective action of the nanoscaffold during the entire period of administration. In this approach, liposomes were used as nanotemplates for the synthesis of polyacrylamide hydrogel NPs under nondenaturing conditions, optimizing the polymer properties to obtain a mesh size small enough to limit the enzyme release while allowing the free diffusion of its substrates and products. The enzyme Cu, Zn-superoxide dismutase was chosen as a test case for this study, but our results indicate that the approach is generalizable to other enzymes. Biocompatible, size-tunable nanoparticles have been obtained, with a good encapsulation efficiency (37%), in which the enzyme maintains its activity. This system represents a promising tool for enzyme-based therapy, which would protect the protein from antibodies and degradation while allowing it to exert its catalytic activity.


Assuntos
Resinas Acrílicas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Superóxido Dismutase/metabolismo , Resinas Acrílicas/síntese química , Resinas Acrílicas/metabolismo , Biocatálise , Ativação Enzimática , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Lipossomos , Tamanho da Partícula , Propriedades de Superfície
5.
Nano Lett ; 13(8): 3553-8, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23815499

RESUMO

We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications.

6.
Nat Commun ; 15(1): 1928, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431651

RESUMO

The molecule-metal interface is of paramount importance for many devices and processes, and directly involved in photocatalysis, molecular electronics, nanophotonics, and molecular (bio-)sensing. Here the photostability of this interface is shown to be sensitive even to room light levels for specific molecules and metals. Optical spectroscopy is used to track photoinduced migration of gold atoms when functionalised with different thiolated molecules that form uniform monolayers on Au. Nucleation and growth of characteristic surface metal nanostructures is observed from the light-driven adatoms. By watching the spectral shifts of optical modes from nanoparticles used to precoat these surfaces, we identify processes involved in the photo-migration mechanism and the chemical groups that facilitate it. This photosensitivity of the molecule-metal interface highlights the significance of optically induced surface reconstruction. In some catalytic contexts this can enhance activity, especially utilising atomically dispersed gold. Conversely, in electronic device applications such reconstructions introduce problematic aging effects.

7.
Pharmaceutics ; 15(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839827

RESUMO

Primary malignant brain tumors are the most common solid neoplasm in childhood. Despite recent advances, many children affected by aggressive or metastatic brain tumors still present poor prognosis, therefore the development of more effective therapies is urgent. Cancer stem cells (CSCs) have been discovered and isolated in both pediatric and adult patients with brain tumors (e.g., medulloblastoma, gliomas and ependymoma). CSCs are a small clonal population of cancer cells responsible for brain tumor initiation, maintenance and progression, displaying resistance to conventional anticancer therapies. CSCs are characterized by a specific repertoire of surface markers and intracellular specific pathways. These unique features of CSCs biology offer the opportunity to build therapeutic approaches to specifically target these cells in the complex tumor bulk. Treatment of pediatric brain tumors with classical chemotherapeutic regimen poses challenges both for tumor location and for the presence of the blood-brain barrier (BBB). Lastly, the application of chemotherapy to a developing brain is followed by long-term sequelae, especially on cognitive abilities. Novel avenues are emerging in the therapeutic panorama taking advantage of nanomedicine. In this review we will summarize nanoparticle-based approaches and the efficacy that NPs have intrinsically demonstrated and how they are also decorated by biomolecules. Furthermore, we propose novel cargoes together with recent advances in nanoparticle design/synthesis with the final aim to specifically target the insidious CSCs population in the tumor bulk.

8.
Sci Rep ; 13(1): 4815, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964220

RESUMO

In mammals, the suprachiasmatic nucleus of the hypothalamus is the master circadian pacemaker that synchronizes the clocks in the central nervous system and periphery, thus orchestrating rhythms throughout the body. However, little is known about how so many cellular clocks within and across brain circuits can be effectively synchronized. In this work, we investigated the implication of two possible pathways: (i) astrocytes-mediated synchronization and (ii) neuronal paracrine factors-mediated synchronization. By taking advantage of a lab-on-a-chip microfluidic device developed in our laboratory, here we report that both pathways are involved. We found the paracrine factors-mediated synchronization of molecular clocks is diffusion-limited and, in our device, effective only in case of a short distance between neuronal populations. Interestingly, interconnecting astrocytes define an active signaling channel that can synchronize molecular clocks of neuronal populations also at longer distances. At mechanism level, we found that astrocytes-mediated synchronization involves both GABA and glutamate, while neuronal paracrine factors-mediated synchronization occurs through GABA signaling. These findings identify a previously unknown role of astrocytes as active cells that might distribute long-range signals to synchronize the brain clocks, thus further strengthening the importance of reciprocal interactions between glial and neuronal cells in the context of circadian circuitry.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Ritmo Circadiano/fisiologia , Astrócitos/fisiologia , Neurônios/metabolismo , Núcleo Supraquiasmático/fisiologia , Mamíferos/fisiologia , Ácido gama-Aminobutírico/metabolismo , Relógios Circadianos/fisiologia
9.
Methods Appl Fluoresc ; 10(4)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36084629

RESUMO

The fluorescent detection of proteins without labels or stains, which affect their behaviour and require additional genetic or chemical preparation, has broad applications to biological research. However, standard approaches require large sample volumes or analyse only a small fraction of the sample. Here we use optofluidic hollow-core photonic crystal fibres to detect and quantify sub-microlitre volumes of unmodified bovine serum albumin (BSA) protein down to 100 nM concentrations. The optofluidic fibre's waveguiding properties are optimised for guidance at the (auto)fluorescence emission wavelength, enabling fluorescence collection from a 10 cm long excitation region, increasing sensitivity. The observed spectra agree with spectra taken from a conventional cuvette-based fluorimeter, corrected for the guidance properties of the fibre. The BSA fluorescence depended linearly on BSA concentration, while only a small hysteresis effect was observed, suggesting limited biofouling of the fibre sensor. Finally, we briefly discuss how this method could be used to study aggregation kinetics. With small sample volumes, the ability to use unlabelled proteins, and continuous flow, the method will be of interest to a broad range of protein-related research.


Assuntos
Fótons , Soroalbumina Bovina , Fluorescência
10.
Light Sci Appl ; 11(1): 281, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151089

RESUMO

Nanomaterials capable of confining light are desirable for enhancing spectroscopies such as Raman scattering, infrared absorption, and nonlinear optical processes. Plasmonic superlattices have shown the ability to host collective resonances in the mid-infrared, but require stringent fabrication processes to create well-ordered structures. Here, we demonstrate how short-range-ordered Au nanoparticle multilayers on a mirror, self-assembled by a sub-nm molecular spacer, support collective plasmon-polariton resonances in the visible and infrared, continuously tunable beyond 11 µm by simply varying the nanoparticle size and number of layers. The resulting molecule-plasmon system approaches vibrational strong coupling, and displays giant Fano dip strengths, SEIRA enhancement factors ~ 106, light-matter coupling strengths g ~ 100 cm-1, Purcell factors ~ 106, and mode volume compression factors ~ 108. The collective plasmon-polariton mode is highly robust to nanoparticle vacancy disorder and is sustained by the consistent gap size defined by the molecular spacer. Structural disorder efficiently couples light into the gaps between the multilayers and mirror, enabling Raman and infrared sensing of sub-picolitre sample volumes.

11.
Nat Commun ; 13(1): 1651, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347137

RESUMO

Improved analytical tools are urgently required to identify degradation and failure mechanisms in Li-ion batteries. However, understanding and ultimately avoiding these detrimental mechanisms requires continuous tracking of complex electrochemical processes in different battery components. Here, we report an operando spectroscopy method that enables monitoring the chemistry of a carbonate-based liquid electrolyte during electrochemical cycling in Li-ion batteries with a graphite anode and a LiNi0.8Mn0.1Co0.1O2 cathode. By embedding a hollow-core optical fibre probe inside a lab-scale pouch cell, we demonstrate the effective evolution of the liquid electrolyte species by background-free Raman spectroscopy. The analysis of the spectroscopy measurements reveals changes in the ratio of carbonate solvents and electrolyte additives as a function of the cell voltage and show the potential to track the lithium-ion solvation dynamics. The proposed operando methodology contributes to understanding better the current Li-ion battery limitations and paves the way for studies of the degradation mechanisms in different electrochemical energy storage systems.

12.
Science ; 374(6572): 1268-1271, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855505

RESUMO

Coherent interconversion of signals between optical and mechanical domains is enabled by optomechanical interactions. Extreme light-matter coupling produced by confining light to nanoscale mode volumes can then access single mid-infrared (MIR) photon sensitivity. Here, we used the infrared absorption and Raman activity of molecular vibrations in plasmonic nanocavities to demonstrate frequency upconversion. We converted approximately 10-micrometer-wavelength incoming light to visible light by surface-enhanced Raman scattering (SERS) in doubly resonant antennas that enhanced upconversion by more than 1010. We showed 140% amplification of the SERS anti-Stokes emission when an MIR pump was tuned to a molecular vibrational frequency, obtaining lowest detectable powers of 1 to 10 microwatts per square micrometer at room temperature. These results have potential for low-cost and large-scale infrared detectors and spectroscopic techniques.

13.
Biosens Bioelectron ; 126: 355-364, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466053

RESUMO

Large-scale neural recordings with high spatial and temporal accuracy are instrumental to understand how the brain works. To this end, it is of key importance to develop probes that can be conveniently scaled up to a high number of recording channels. Despite recent achievements in complementary metal-oxide semiconductor (CMOS) multi-electrode arrays probes, in current circuit architectures an increase in the number of simultaneously recording channels would significantly increase the total chip area. A promising approach for overcoming this scaling issue consists in the use of the modular Active Pixel Sensor (APS) concept, in which a small front-end circuit is located beneath each electrode. However, this approach imposes challenging constraints on the area of the in-pixel circuit, power consumption and noise. Here, we present an APS CMOS-probe technology for Simultaneous Neural recording that successfully addresses all these issues for whole-array read-outs at 25 kHz/channel from up to 1024 electrode-pixels. To assess the circuit performances, we realized in a 0.18 µm CMOS technology an implantable single-shaft probe with a regular array of 512 electrode-pixels with a pitch of 28 µm. Extensive bench tests showed an in-pixel gain of 45.4 ± 0.4 dB (low pass, F-3 dB = 4 kHz), an input referred noise of 7.5 ± 0.67 µVRMS (300 Hz to 7.5 kHz) and a power consumption <6 µW/pixel. In vivo acute recordings demonstrate that our SiNAPS CMOS-probe can sample full-band bioelectrical signals from each electrode, with the ability to resolve and discriminate activity from several packed neurons both at the spatial and temporal scale. These results pave the way to new generations of compact and scalable active single/multi-shaft brain recording systems.


Assuntos
Técnicas Biossensoriais , Mapeamento Encefálico , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos , Encéfalo/metabolismo , Eletrodos , Metais/química , Metais/metabolismo , Neurônios/química , Óxidos/química , Semicondutores
14.
Nanoscale ; 10(36): 17105-17111, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30179242

RESUMO

Here, we propose an easy and robust strategy for the versatile preparation of hybrid plasmonic nanopores by means of controlled deposition of single flakes of MoS2 directly on top of metallic holes. The device is realized on silicon nitride membranes and can be further refined by TEM or FIB milling to achieve the passing of molecules or nanometric particles through a pore. Importantly, we show that the plasmonic enhancement provided by the nanohole is strongly accumulated in the 2D nanopore, thus representing an ideal system for single-molecule sensing and sequencing in a flow-through configuration. Here, we also demonstrate that the prepared 2D material can be decorated with metallic nanoparticles that can couple their resonance with the nanopore resonance to further enhance the electromagnetic field confinement at the nanoscale level. This method can be applied to any gold nanopore with a high level of reproducibility and parallelization; hence, it can pave the way to the next generation of solid-state nanopores with plasmonic functionalities. Moreover, the controlled/ordered integration of 2D materials on plasmonic nanostructures opens a pathway towards new investigation of the following: enhanced light emission; strong coupling from plasmonic hybrid structures; hot electron generation; and sensors in general based on 2D materials.

15.
IEEE Trans Biomed Circuits Syst ; 12(3): 532-542, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29877817

RESUMO

Electrophysiological signals in the brain are distributed over broad spatial and temporal scales. Monitoring these signals at multiple scales is fundamental in order to decipher how brain circuits operate and might dysfunction in disease. A possible strategy to enlarge the experimentally accessible spatial and temporal scales consists in combining the use of multiple probes with different resolutions and sensing areas. Here, we propose a neural recording system capable of simultaneous and synchronous acquisitions from a new generation of high-resolution CMOS probes (512 microelectrodes, 25 kHz/electrode whole-array sampling frequency) as well as from a custom-designed CMOS-based headstage. While CMOS probes can provide recordings from a large number of closely spaced electrodes on single-shaft devices, the CMOS-based headstage can be used to interface the wide range of available intra- or epi-cortical passive electrode array devices. The current platform was designed to simultaneously manage high-resolution recordings from up to four differently located CMOS probes and from a single 36-channels low-resolution passive electrode array device. The design, implementation, and performances for both ICs and for the FPGA-based interface are presented. Experiments on retina and neuronal culture preparations demonstrate the recording of neural spiking activity for both CMOS devices and the functionality of the system.


Assuntos
Ondas Encefálicas/fisiologia , Processamento de Sinais Assistido por Computador/instrumentação , Animais , Eletrodos , Camundongos
16.
Adv Mater ; 29(37)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28752593

RESUMO

Nanoparticles (NPs) can self-assemble into complex, organized superstructures on patterned surfaces through fluid-mediated interactions. However, the detailed mechanisms for such NP assemblies are largely unknown. Here, using in situ transmission electron microscopy, the stepwise self-assembly dynamics of hydrophobic gold NPs into long filaments formed on the surfaces of water-filled patterned nanochannel templates is observed. First, the formation of a meniscus between the nanochannel walls, during the slow drying of water, causes accumulation of the NPs in the middle of the nanochannels. Second, owing to the strong van der Waals attraction between the NP ligands, the NPs condense into filaments along the centers of the nanochannels. Filaments with highly fluctuating longitudinal NP densities are also observed to fragment into separated structures. Understanding the intermediate stages of fluid-mediated NP self-assembly on patterned surfaces will have important implications for the controlled formation of templated NP assemblies with numerous applications.

17.
PLoS One ; 12(4): e0175581, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419111

RESUMO

Metabolomics is an emerging field of cell biology that aims at the comprehensive identification of metabolite levels in biological fluids or cells in a specific functional state. Currently, the major tools for determining metabolite concentrations are mass spectrometry coupled with chromatographic techniques and nuclear magnetic resonance, which are expensive, time consuming and destructive for the samples. Here, we report a time resolved approach to monitor metabolite dynamics in cell cultures, based on Surface Enhanced Raman Scattering (SERS). This method is label-free, easy to use and provides the opportunity to simultaneously study a broad range of molecules, without the need to process the biological samples. As proof of concept, NIH/3T3 cells were cultured in vitro, and the extracellular medium was collected at different time points to be analyzed with our engineered SERS substrates. By identifying individual peaks of the Raman spectra, we showed the simultaneous detection of several components of the conditioned medium, such as L-tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine and fetal bovine serum proteins, as well as their intensity changes during time. Furthermore, analyzing the whole Raman data set with the Principal Component Analysis (PCA), we demonstrated that the Raman spectra collected at different days of culture and clustered by similarity, described a well-defined trajectory in the principal component plot. This approach was then utilized to determine indirectly the functional state of the macrophage cell line Raw 264.7, stimulated with the lipopolysaccharide (LPS) for 24 hours. The collected spectra at different time points, clustered by the PCA analysis, followed a well-defined trajectory, corresponding to the functional change of cells toward the activated pro-inflammatory state induced by the LPS. This study suggests that our engineered SERS surfaces can be used as a versatile tool both for the characterization of cell culture conditions and the functional state of cells over time.


Assuntos
Espaço Extracelular/metabolismo , Macrófagos/metabolismo , Análise Espectral Raman/métodos , Aminoácidos/metabolismo , Animais , Bovinos , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Subunidade p40 da Interleucina-12/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Camundongos , Microscopia Eletrônica de Varredura , Células NIH 3T3 , Análise de Componente Principal , Rodaminas/química , Soroalbumina Bovina/metabolismo , Prata/química , Propriedades de Superfície , Fatores de Tempo
18.
Sci Rep ; 6: 24539, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080420

RESUMO

With the objective to conceive a plasmonic solar cell with enhanced photocurrent, we investigate the role of plasmonic nanoshells, embedded within a ultrathin microcrystalline silicon solar cell, in enhancing broadband light trapping capability of the cell and, at the same time, to reduce the parasitic loss. The thickness of the considered microcrystalline silicon (µc-Si) layer is only ~1/6 of conventional µc-Si based solar cells while the plasmonic nanoshells are formed by a combination of silica and gold, respectively core and shell. We analyze the cell optical response by varying both the geometrical and optical parameters of the overall device. In particular, the nanoshells core radius and metal thickness, the periodicity, the incident angle of the solar radiation and its wavelength are varied in the widest meaningful ranges. We further explain the reason for the absorption enhancement by calculating the electric field distribution associated to resonances of the device. We argue that both Fabry-Pérot-like and localized plasmon modes play an important role in this regard.

19.
Nanoscale ; 8(27): 13445-53, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27350590

RESUMO

We have investigated the influence of Rabi splitting tuning on the dynamics of strongly coupled J-aggregate/surface plasmon polariton systems. In particular, the Rabi splitting was tuned by modifying the J-aggregate molecule concentration while a polaritonic system was provided by a nanostructure formed by holes array in a golden layer. From the periodic and concentration changes we have identified, through numerical and experimental steady-state analyses, the best geometrical configuration for maximizing Rabi splitting, which was then used for transient absorption measurements. It was found that in transient absorption spectra, under upper band excitation, two bleaching peaks appear when a nanostructured polaritonic pattern is used. Importantly, their reciprocal distance increases upon increase of J-aggregate concentration, a result confirmed by steady-state analysis. In a similar manner it was also found that the lifetime of the upper band is intimately related to the coupling strength. In particular, we argue that with strong coupling strength, i.e. high J-aggregate concentration, a short lifetime of the upper band has to be expected due to the suppression of the bottleneck effect. This result supports the idea that the dynamics of hybrid systems is profoundly dependent on Rabi splitting.

20.
Beilstein J Nanotechnol ; 6: 492-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821690

RESUMO

The chemical environment of cells is an extremely complex and multifaceted system that includes many types of proteins, lipids, nucleic acids and various other components. With the final aim of studying these components in detail, we have developed multiband plasmonic antennas, which are suitable for highly sensitive surface enhanced Raman spectroscopy (SERS) and are activated by a wide range of excitation wavelengths. The three-dimensional hollow nanoantennas were produced on an optical resist by a secondary electron lithography approach, generated by fast ion-beam milling on the polymer and then covered with silver in order to obtain plasmonic functionalities. The optical properties of these structures have been studied through finite element analysis simulations that demonstrated the presence of broadband absorption and multiband enhancement due to the unusual geometry of the antennas. The enhancement was confirmed by SERS measurements, which showed a large enhancement of the vibrational features both in the case of resonant excitation and out-of-resonance excitation. Such characteristics indicate that these structures are potential candidates for plasmonic enhancers in multifunctional opto-electronic biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA