Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 60(11): 6726-6734, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27572404

RESUMO

The chronic airway infections with Pseudomonas aeruginosa in people with cystic fibrosis (CF) are treated with aerosolized antibiotics, oral fluoroquinolones, and/or intravenous combination therapy with aminoglycosides and ß-lactam antibiotics. An international strain collection of 361 P. aeruginosa isolates from 258 CF patients seen at 30 CF clinics was examined for mutations in 17 antimicrobial susceptibility and resistance loci that had been identified as hot spots of mutation by genome sequencing of serial isolates from a single CF clinic. Combinatorial amplicon sequencing of pooled PCR products identified 1,112 sequence variants that were not present in the genomes of representative strains of the 20 most common clones of the global P. aeruginosa population. A high frequency of singular coding variants was seen in spuE, mexA, gyrA, rpoB, fusA1, mexZ, mexY, oprD, ampD, parR, parS, and envZ (amgS), reflecting the pressure upon P. aeruginosa in lungs of CF patients to generate novel protein variants. The proportion of nonneutral amino acid exchanges was high. Of the 17 loci, mexA, mexZ, and pagL were most frequently affected by independent stop mutations. Private and de novo mutations seem to play a pivotal role in the response of P. aeruginosa populations to the antimicrobial load and the individual CF host.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos , Loci Gênicos , Genoma Bacteriano , Mutação , Pseudomonas aeruginosa/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Clonais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/microbiologia , Sistema Respiratório/patologia , Alinhamento de Sequência
2.
ERJ Open Res ; 2(2)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27730195

RESUMO

Chronic airway infections determine most morbidity in people with cystic fibrosis (CF). Herein, we present unbiased quantitative data about the frequency and abundance of DNA viruses, archaea, bacteria, moulds and fungi in CF lower airways. Induced sputa were collected on several occasions from children, adolescents and adults with CF. Deep sputum metagenome sequencing identified, on average, approximately 10 DNA viruses or fungi and several hundred bacterial taxa. The metagenome of a CF patient was typically found to be made up of an individual signature of multiple, lowly abundant species superimposed by few disease-associated pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, as major components. The host-associated signatures ranged from inconspicuous polymicrobial communities in healthy subjects to low-complexity microbiomes dominated by the typical CF pathogens in patients with advanced lung disease. The DNA virus community in CF lungs mainly consisted of phages and occasionally of human pathogens, such as adeno- and herpesviruses. The S. aureus and P. aeruginosa populations were composed of one major and numerous minor clone types. The rare clones constitute a low copy genetic resource that could rapidly expand as a response to habitat alterations, such as antimicrobial chemotherapy or invasion of novel microbes.

3.
Environ Microbiol Rep ; 8(2): 227-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26711897

RESUMO

Bacterial populations differentiate at the subspecies level into clonal complexes. Intraclonal genome diversity was studied in 100 isolates of the two dominant Pseudomonas aeruginosa clones C and PA14 collected from the inanimate environment, acute and chronic infections. The core genome was highly conserved among clone members with a median pairwise within-clone single nucleotide sequence diversity of 8 × 10(-6) for clone C and 2 × 10(-5) for clone PA14. The composition of the accessory genome was, on the other hand, as variable within the clone as between unrelated clones. Each strain carried a large cargo of unique genes. The two dominant worldwide distributed P. aeruginosa clones combine an almost invariant core with the flexible gain and loss of genetic elements that spread by horizontal transfer.


Assuntos
Variação Genética , Genótipo , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Sequência Conservada , Microbiologia Ambiental , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA