Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Small ; 16(25): e2000285, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32406176

RESUMO

Nanoparticles have become an important utility in many areas of medical treatment such as targeted drug and treatment delivery as well as imaging and diagnostics. These advances require a complete understanding of nanoparticles' fate once placed in the body. Upon exposure to blood, proteins adsorb onto the nanoparticles surface and form a protein corona, which determines the particles' biological fate. This study reports on the protein corona formation from blood serum and plasma on spherical and rod-shaped nanoparticles. These two types of mesoporous silica nanoparticles have identical chemistry, porosity, surface potential, and size in the y-dimension, one being a sphere and the other a rod shape. The results show a significantly larger amount of protein attaching from both plasma and serum on the rod-like particles compared to the spheres. Interrogation of the protein corona by liquid chromatography-mass spectrometry reveals shape-dependent differences in the adsorption of immunoglobulins and albumin proteins from both plasma and serum. This study points to the need for taking nanoparticle shape into consideration because it can have a significant impact on the fate and therapeutic potential of nanoparticles when placed in the body.


Assuntos
Nanopartículas , Coroa de Proteína , Sistemas de Liberação de Medicamentos , Dióxido de Silício , Propriedades de Superfície
2.
Molecules ; 24(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163608

RESUMO

Interactions between grape seed tannin and either a mannoprotein or an arabinogalactan in model wine solutions of different ethanol concentrations were characterized with nanoparticle tracking analysis (NTA), UV-visible spectroscopy and dynamic light scattering (DLS). NTA results reflected a shift in particle size distribution due to aggregation. Furthermore, the light scattering intensity of each tracked particle measured by NTA demonstrated the presence of aggregates, even when a shift in particle size was not apparent. Mannoprotein and arabinogalactan behaved differently when combined with seed tannin. Mannoprotein formed large, highly light-scattering aggregates, while arabinogalactan exhibited only weak interactions with seed tannin. A 3% difference in alcohol concentration of the model solution (12 vs. 15% v/v) was sufficient to affect the interactions between mannoprotein and tannin when the tannin concentration was high. In summary, this study showed that NTA is a promising tool for measuring polydisperse samples of grape and wine macromolecules, and their aggregates under wine-like conditions. The implications for wine colloidal properties are discussed based on these results.


Assuntos
Nanopartículas/química , Polissacarídeos/química , Taninos/química , Vinho/análise , Goma Arábica/química , Glicoproteínas de Membrana/química , Peso Molecular , Tamanho da Partícula , Espalhamento de Radiação , Sementes/química
3.
Molecules ; 21(10)2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27763562

RESUMO

The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.


Assuntos
Polifenóis/química , Polissacarídeos/química , Proteínas/química , Vinho/análise , Adsorção , Microscopia de Força Atômica , Polimerização , Polímeros/química , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
4.
ACS Appl Mater Interfaces ; 16(15): 18449-18458, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578282

RESUMO

Developing novel antibacterial strategies has become an urgent requisite to overcome the increasing pervasiveness of antimicrobial-resistant bacteria and the advent of biofilms. Aggregation-induced emission-based photosensitizers (AIE PSs) are promising candidates due to their unique photodynamic and photothermal properties. Bioengineering structure-inherent AIE PSs for developing thin film coatings is still an unexplored area in the field of nanoscience. We have adopted a synergistic approach combining plasma technology and AIE PS-based photodynamic therapy to develop coatings that can eradicate bacterial infections. Here, we loaded AIE PSs within biomimetic bacterium-like particles derived from a probiotic strain, Lactobacillus fermentum. These hybrid conjugates are then immobilized on polyoxazoline-coated substrates to develop a bioinspired coating to fight against implant-associated infections. These coatings could selectively kill Gram-positive and Gram-negative bacteria, but not damage mammalian cells. The mechanistic studies revealed that the coatings can generate reactive oxygen species that can rupture the bacterial cell membranes. The mRNA gene expression of proinflammatory cytokines confirmed that they can modulate infection-related immune responses. Thus, this nature-inspired design has opened a new avenue for the fabrication of a next-generation antibacterial coating to reduce infections and associated burdens.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Fármacos Fotossensibilizantes/química , Antibacterianos/química , Biomimética , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bactérias , Complicações Pós-Operatórias , Mamíferos
5.
Food Chem ; 422: 136159, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146354

RESUMO

Tartrate stabilization remains a necessary step in commercial wine production to avoid the precipitation of crystals in bottled wine. The conventional refrigeration method to prevent crystallization of potassium bitartrate is time-consuming, energy-intensive, and involves a filtration step to remove the sediment. Nevertheless, it is still the most used stabilization method by winemakers. This work exploits for the first time an alternative to traditional cold stabilization that explores the potential of carefully tailored surface coatings obtained by plasma polymerization. Coatings containing amine functional groups were most potent in binding and removing potassium in heat-unstable wines. In contrast, carboxyl acid groups rich surfaces had the most significant impact on heat-stabilized wines. The results of this study demonstrate that surfaces with carefully designed chemical functionalities can remove tartaric acid from wine and induce cold stabilization. This process can operate at higher temperatures, reducing the need for cooling facilities, saving energy, and improving cost-effectiveness.


Assuntos
Vinho , Vinho/análise , Tartaratos/química , Cristalização , Potássio
6.
NPJ Sci Food ; 7(1): 5, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750569

RESUMO

Volatile sulfur compounds (VSCs), such as hydrogen sulfide, methanethiol, and ethanethiol, are associated with 'reductive' aromas in wine and contribute to approximately 30% of all wine faults. These compounds can have a significant impact on wine aroma and perceived quality, and subsequently, consumer preference. In this communication, we report a method for the removal of VSC compounds based on nanoengineered surfaces that incorporate immobilized gold nanoparticles.

7.
Langmuir ; 28(9): 4233-40, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22272722

RESUMO

The adsorption of two dextrin-based polymers, a regular wheat dextrin (TY) and a carboxymethyl-substituted (CM) dextrin, onto an anatase TiO(2) particle film has been studied using in situ attenuated total reflection (ATR) FTIR spectroscopy. Infrared spectra of the polymer solutions and the polymer adsorbed at the anatase surface were acquired for two solution conditions: pH 3 and pH 9; below and above the isoelectric point (IEP) of anatase, respectively. Comparison of the polymer solution spectra and the adsorbed layer spectra highlighted a number of spectral differences that were attributed to involvement of the carboxyl group of CM Dextrin interacting with the anatase surface directly and the adsorption of oxidized dextrin chains in the case of regular dextrin (TY) at high pH. The adsorption/desorption kinetics were determined by monitoring spectral peaks of the pyranose ring of both polymers. Adsorption equilibrium was not established for Dextrin TY for many hours, whereas CM Dextrin reached equilibrium in its adsorption within 60 min. The extent of desorption of Dextrin TY (observed by flowing a background electrolyte dextrin-free solution) was extensive at both pH values, which reflects the poor affinity and binding of the polymer on anatase. In contrast, CM Dextrin underwent almost no desorption, indicating a high affinity between the carboxyl groups of the polymer and the anatase surface.

8.
Langmuir ; 28(3): 1683-8, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22225512

RESUMO

Synchrotron FTIR microscopy has been used to probe the structure of model boundary lubricant layers confined at the solid-solid interface. The combination of high brightness of the IR source and a novel contact geometry that uses a hemispherical internal reflection element as the means for light delivery has enabled the detection of <2.5 nm thin monolayer lubricant layers in the solid-solid contact, in addition to allowing for spectral acquisition from specific regions of the contact. Spectra of hydration water from within a confined polyelectrolyte multilayer film have also been acquired, highlighting the altered hydrogen bonding environment within the polymer layer.


Assuntos
Eletrólitos/química , Lubrificantes/química , Microscopia de Força Atômica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quitosana/química , Ácidos Eicosanoicos/química , Ácido Hialurônico/química , Ligação de Hidrogênio , Microscopia de Força Atômica/instrumentação , Modelos Químicos , Nanotecnologia/métodos , Síncrotrons , Água
9.
Food Chem ; 374: 131770, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34894466

RESUMO

The methods currently available for determining haze proteins in wine are time-consuming, expensive, and often not sufficiently accurate. The latter may lead to bentonite over-fining of a wine, which might strip wine phenolics and aroma compounds, or wine under-fining, which increases the risk of protein instability. In this work, an efficient and rapid fluorescence-based technology to detect haze-forming proteins in white wines was developed. A fluorescent compound was synthesised to selectively bind haze-forming proteins. Studies involving HPLC demonstrated a linear dependence over a range of relevant haze protein concentrations and a low detection limit of 2 mg/L. Forty-eight control and bentonite fined wines were analysed to validate the analytical performance of the fluorescent dye in the detection of haze-forming proteins. The method can be deployed rapidly, without sample preparation, presenting an opportunity to use in routine testing and overcome limitations of the "heat test" currently used in the wine industry.


Assuntos
Vitis , Vinho , Fluorescência , Proteínas de Plantas , Tecnologia , Vinho/análise
10.
Food Chem ; 385: 132658, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313192

RESUMO

Protein is reportedly negligible in most red wines, due to its loss following co-precipitation with phenolic substances. A method for protein quantification in red wine was developed which overcame analytical interference from phenolic substances, based on ethanol precipitation, followed by acid-hydrolysis and amino acid quantification. Protein concentration was surveyed in a range of red wines produced from V. vinifera and interspecific (Vitis spp) hybrids, revealing higher than expected concentrations, ranging from 23 mg/L ± 2.57 to 380 mg/L ± 16. The results showed that tannin extracted from grapes remains soluble in wine in the presence of protein even at high protein (>100 mg/L) and tannin (>500 mg/L) concentrations. As a further consequence of this, the particle size and concentration of colloids within high- and low-protein wines were similar, independent of protein or tannin concentration. Higher wine tannin concentration was also correlated with increased heat stability of wine protein.


Assuntos
Vitis , Vinho , Frutas/química , Hidrólise , Fenóis/análise , Taninos/química , Vitis/química , Vinho/análise
11.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215013

RESUMO

Nanoparticles are widely used for biomedical applications such as vaccine, drug delivery, diagnostics, and therapeutics. This study aims to reveal the influence of nanoparticle surface functionalization on protein corona formation from blood serum and plasma and the subsequent effects on the innate immune cellular responses. To achieve this goal, the surface chemistry of silica nanoparticles of 20 nm diameter was tailored via plasma polymerization with amine, carboxylic acid, oxazolines, and alkane functionalities. The results of this study show significant surface chemistry-induced differences in protein corona composition, which reflect in the subsequent inflammatory consequences. Nanoparticles rich with carboxylic acid surface functionalities increased the production of pro-inflammatory cytokines in response to higher level of complement proteins and decreased the number of lipoproteins found in their protein coronas. On another hand, amine rich coatings led to increased expressions of anti-inflammatory markers such as arginase. The findings demonstrate the potential to direct physiological responses to nanomaterials via tailoring their surface chemical composition.

12.
Food Chem ; 352: 129343, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33652194

RESUMO

In this work, the interaction of wine macromolecules with a bovine serum albumin (BSA) was investigated using fluorescence correlation spectroscopy (FCS). FCS offers the opportunity to study molecular and macromolecular aggregation without disturbing the wine by introducing only very small amounts of fluorescently labelled molecules to the system. It was observed that the diffusion coefficient of fluorescently labelled BSA varies with the addition of wine macromolecules, indicating changes in the protein conformation and the formation of complexes and aggregates. The addition of a wine polysaccharide rhamnogalacturonan II-enriched fraction led to aggregation, while addition of a mannoprotein-enriched fraction exhibited a protective effect on protein aggregation. Proteins strongly interacted with tannins, leading to the precipitation of protein-tannin complexes, while the presence of polysaccharides prevented this precipitation. Finally, the application of FCS was demonstrated in real wines, to investigate the problem of protein haze formation through live monitoring of heat-induced aggregation in wine.


Assuntos
Análise de Alimentos , Substâncias Macromoleculares/química , Espectrometria de Fluorescência , Vinho/análise
13.
Langmuir ; 26(23): 17785-9, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21069959

RESUMO

We present strong evidence for the oxidation of conjugated polymers in the formation of conjugated polymer dots (CPdots) using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Although recent studies show that folding of the polymer chain into a compact 3D structure is involved in the formation of these nanoparticles, the process by which these intrinsically hydrophobic nanoscale particles circumvent aggregation in water is still not well understood. Zeta potential results show that these dots have a negatively charged surface at neutral pH, with a zeta potential and surface charge density of approximately -40 mV and (1.39 - 1.70) × 10(-2) C/m(2), respectively. In addition, quantitative elemental analysis of CPdots indicates that oxygen composes 7-13% of these nanoparticles. The overall results support the presence of chemical defects in forming a hydrophilic surface of CPdots. As a consequence, the charged surface contributes to inhibiting the aggregation of CPdots in water, leading to colloidal stability.


Assuntos
Polímeros/química , Espectrometria por Raios X/métodos , Coloides/química , Corantes Fluorescentes/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica/métodos , Nanopartículas/química , Nanotecnologia/métodos , Oxigênio/química , Tamanho da Partícula , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
14.
Langmuir ; 25(23): 13290-4, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19860372

RESUMO

The influence of adsorbed dextrin-based polymers on the attachment of a rising air bubble to a talc surface has been investigated. Liquid film rupture and dynamic contact angle studies have highlighted the major role that adsorbed polymers can play in bubble-particle attachment. No direct link was established between the equilibrium contact angle of polymer-treated talc surfaces and talc flotation recovery. However, clear correlations were observed between the flotation recovery of polymer-treated talc and the measured wetting film rupture time and rate of dewetting for a bubble attaching to a talc basal plane surface treated with the polymers. The retardation of the three-phase contact line expansion caused by the adsorbed polymers was found to have the largest influence on the bubble-particle attachment. The effect of the morphology (coverage, distribution, and shape) of the adsorbed layer on the wetting film rupture and the motion of the receding water front is discussed.

15.
Foods ; 9(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861250

RESUMO

Protein haze remains a serious problem for the wine industry and requires costly bentonite treatment, leading to significant wine volume loss. Recently developed magnetic separation technology that allows a fast and efficient separation of haze proteins from wine shows promise for the development of an alternative method for white wine fining. The key purpose of this study was to understand the potential of the nanoparticles to be reused in multiple fining and regeneration cycles. Bare and acrylic-acid-based plasma polymer coated magnetic nanoparticles were cleaned with water, 10% SDS/water and acetone/water solution after each adsorption cycle to investigate their restored efficiency in removing pathogenesis-related proteins from three unfined white wines. The concentrations of metals, acids and phenolics were monitored to determine changes in the concentration of these essential wine constituents. The regeneration study verified that the acrylic acid plasma-coated magnetic nanoparticles, which underwent ten successive adsorption-desorption processes, still retained close to the original removal capacity for haze proteins from wines when 10% SDS solution and water were used for surface regeneration. In addition, the concentrations of organic acids and wine phenolic content remained almost unchanged, which are important indicators for the retention of the original wine composition.

16.
Adv Healthc Mater ; 8(17): e1900595, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31328896

RESUMO

This report addresses the issue of optimizing extracellular matrix protein density required to support osteogenic lineage differentiation of mesenchymal stem cells (MSCs) by culturing MSCs on surface-bound density gradients of immobilized collagen type I (COL1) and osteopontin (OPN). A chemical surface gradient is prepared by tailoring the surface chemical composition from high hydroxyl groups to aldehyde groups using a diffusion-controlled plasma polymerization technique. Osteogenesis on the gradient surface is determined by immunofluorescence staining against Runx2 as an early marker and by staining of calcium phosphate deposits as a late stage differentiation marker. The Runx2 intensity and calcified area increase with increasing COL1 density up to a critical value corresponding to 124.2 ng cm-2 , above which cell attachment and differentiation do not rise further, while this critical value for OPN is 19.0 ng cm-2 . This gradient approach may facilitate the screening of an optimal biomolecule surface density on tissue-engineered scaffolds, implants, or tissue culture ware to obtain the desired cell response, and may generate opportunities for more cost-effective regenerative medicine.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proteínas da Matriz Extracelular/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Aldeídos/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Etanol/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteopontina/farmacologia , Ratos Wistar
17.
Food Chem ; 275: 154-160, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724182

RESUMO

Magnetic nanoparticles were modified by plasma polymerization, using allylamine, acrylic acid and 2-methyl-2-oxazoline as precursor to produce amine, carboxyl and oxazoline functional group rich surfaces. The nanoparticles were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. The capacity of nanoparticles carrying different surface properties to remove haze-forming proteins from Sémillon and Sauvignon Blanc unfined wines was examined by high-performance liquid chromatography (HPLC). The protein capture efficiency of the modified surfaces decreases in the following order: COOH > POx > NH2. This study will help optimising the design of this new technology for the selective removal of haze proteins from white wines.


Assuntos
Manipulação de Alimentos/métodos , Nanopartículas/química , Proteínas de Plantas/isolamento & purificação , Vinho , Acrilatos/química , Alilamina/química , Magnetismo , Oxazóis/química , Espectroscopia Fotoeletrônica , Proteínas de Plantas/metabolismo , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Vinho/análise , Difração de Raios X
18.
ACS Appl Mater Interfaces ; 11(31): 27615-27623, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31310498

RESUMO

The nature of the protein corona forming on biomaterial surfaces can affect the performance of implanted devices. This study investigated the role of surface chemistry and wettability on human serum-derived protein corona formation on biomaterial surfaces and the subsequent effects on the cellular innate immune response. Plasma polymerization, a substrate-independent technique, was employed to create nanothin coatings with four specific chemical functionalities and a spectrum of surface charges and wettability. The amount and type of protein adsorbed was strongly influenced by surface chemistry and wettability but did not show any dependence on surface charge. An enhanced adsorption of the dysopsonin albumin was observed on hydrophilic carboxyl surfaces while high opsonin IgG2 adsorption was seen on hydrophobic hydrocarbon surfaces. This in turn led to a distinct immune response from macrophages; hydrophilic surfaces drove greater expression of anti-inflammatory cytokines by macrophages, whilst surface hydrophobicity caused increased production of proinflammatory signaling molecules. These findings map out a unique relationship between surface chemistry, hydrophobicity, protein corona formation, and subsequent cellular innate immune responses; the potential outcomes of these studies may be employed to tailor biomaterial surface modifications, to modulate serum protein adsorption and to achieve the desirable innate immune response to implanted biomaterials and devices.


Assuntos
Materiais Biocompatíveis , Proteínas Sanguíneas/química , Imunidade Inata/efeitos dos fármacos , Macrófagos/imunologia , Coroa de Proteína/química , Adsorção , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células THP-1
19.
Food Chem ; 232: 508-514, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490105

RESUMO

Haze formation is a significant problem for the wine industry. A novel technology for the rapid, selective, magnetic removal of pathogenesis-related proteins from wine was developed. The pathogenesis-related proteins in nine different white wines were selectively captured and removed by acrylic acid plasma-coated magnetic nanoparticles. Treated white wines were analyzed for protein and phenolic content to assess the performance of the functionalized magnetic nanoparticles. The analysis showed that the acrylic acid coated magnetic nanoparticles effectively removed proteins and did not significantly change the phenolic composition of the wines. This new technology may become an alternative to conventional bentonite treatment which has economic and sensory impacts in the wine production process. Furthermore, such rapid separation technology for the binding and removal of proteins could benefit other areas such as diagnostics, water treatment, biotechnology and therapeutics.


Assuntos
Proteínas de Plantas , Vinho , Bentonita , Análise de Alimentos , Fenóis , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/toxicidade
20.
Food Chem ; 207: 148-56, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080891

RESUMO

The effects of pH and Cu(2+) treatment on the formation of volatile sulfur compounds (VSCs) were investigated in Chardonnay and Shiraz wine samples. Four VSCs were significantly affected by pH, with lower wine pH associated with decreased hydrogen sulfide (H2S), methanethiol, dimethyl sulfide, and carbon disulfide concentrations. The effects of pH and Cu(2+) on H2S formation from known precursor compounds were subsequently studied in a model wine system. In samples treated with cysteine and glutathione lower pH produced less H2S. Nanoparticle tracking analysis was used to study the effects of variable pH concentrations in a model system containing Cu(2+), tartaric acid, and H2S. Differences in Cu(2)(+)-tartrate complexes particle size and concentration were measured as a function of pH and H2S addition, suggesting the type of complexes formed may affect the binding sites of Cu(2+) available to catalyse the formation of VSCs such as H2S.


Assuntos
Cobre/química , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Compostos de Sulfidrila/química , Compostos de Enxofre/química , Vinho/análise , Cobre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA