Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(15): 10644-10653, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39012323

RESUMO

A method for the construction of trifluorinated-5-methylenepyrrolidinone is reported. This strategy combines an acid-catalyzed two-carbon homologation process between ynamides and aldehydes, providing CF3-substituted dienes followed by a metal-free domino hydroamination/isomerization/transamidation sequence, delivering trifluorinated-5-methylenepyrrolidinone stereoselectively.

2.
Org Biomol Chem ; 22(5): 940-944, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38180315

RESUMO

We developed a chemoselective metal-free access for the 1,2- and 2,3-semireduction of CF3-N-allenamides. The enamide functionality of CF3-substituted N-allenamides could be efficiently reduced by Et3SiH/BF3·OEt2 in total regioselectivity and good stereoselectivity, whereas DBU promoted the isomerization of the resulting allyl amide leading exclusively to the E-configurated enamide.

3.
Plant Cell ; 31(12): 2947-2972, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31628167

RESUMO

Flowers are essential but vulnerable plant organs, exposed to pollinators and florivores; however, flower chemical defenses are rarely investigated. We show here that two clustered terpene synthase and cytochrome P450 encoding genes (TPS11 and CYP706A3) on chromosome 5 of Arabidopsis (Arabidopsis thaliana) are tightly coexpressed in floral tissues, upon anthesis and during floral bud development. TPS11 was previously reported to generate a blend of sesquiterpenes. By heterologous coexpression of TPS11 and CYP706A3 in yeast (Saccharomyces cerevisiae) and Nicotiana benthamiana, we demonstrate that CYP706A3 is active on TPS11 products and also further oxidizes its own primary oxidation products. Analysis of headspace and soluble metabolites in cyp706a3 and 35S:CYP706A3 mutants indicate that CYP706A3-mediated metabolism largely suppresses sesquiterpene and most monoterpene emissions from opening flowers, and generates terpene oxides that are retained in floral tissues. In flower buds, the combined expression of TPS11 and CYP706A3 also suppresses volatile emissions and generates soluble sesquiterpene oxides. Florivory assays with the Brassicaceae specialist Plutella xylostella demonstrate that insect larvae avoid feeding on buds expressing CYP706A3 and accumulating terpene oxides. Composition of the floral microbiome appears also to be modulated by CYP706A3 expression. TPS11 and CYP706A3 simultaneously evolved within Brassicaceae and form the most versatile functional gene cluster described in higher plants so far.plantcell;31/12/2947/FX1F1fx1.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/metabolismo , Terpenos/antagonistas & inibidores , Alquil e Aril Transferases/genética , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Flores/genética , Flores/microbiologia , Expressão Gênica , Larva , Microbiota , Modelos Moleculares , Simulação de Acoplamento Molecular , Monoterpenos/metabolismo , Mariposas , Família Multigênica , Filogenia , Sesquiterpenos/metabolismo , Terpenos/química , Terpenos/metabolismo , Nicotiana/metabolismo , Leveduras/metabolismo
4.
Chemistry ; 28(1): e202103598, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34826155

RESUMO

A copper-mediated coupling reaction between ynamides and diazo-compounds to produce N-allenamides is reported for the first time. This method enables facile and rapid access to terminal N-allenamides by using commercially available TMS-diazomethane with wide functional group compatibility on the nitrogen. Furthermore, the ubiquity of molecules containing a fluorine moiety in medicine, in agricultural, and material science requires the continuous search of new building blocks, including this unique surrogate. The CuI/diazo protocol was successfully applied to the synthesis of fluorine-substituted N-allenamides. DFT calculations provided insights in the mechanism involved.


Assuntos
Cobre , Flúor , Compostos Azo , Catálise
5.
J Org Chem ; 87(8): 5404-5411, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35344371

RESUMO

N-Allenamides, substituted by an ester at the γ-position, were obtained through addition of terminal ynamides with ethyl diazoacetate under copper catalysis for the first time. Regio- and stereoselective hydroamination of those activated N-allenamides provided exclusively E-configured captodative enamimes through a one-pot anti-Michael addition. Numerous ynamides as well as various secondary amines were adapted in this process.


Assuntos
Aminas , Cobre , Catálise , Estereoisomerismo
6.
J Org Chem ; 87(11): 7229-7238, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35549261

RESUMO

A synthesis of new-to-nature aza-iridoids via ynamides is presented. ZrCl4 proved to be the best acid to perform this transformation. Various ynamides were accommodated, and seco-iridoids could be obtained as well. Aza-iridoids were infiltrated into leaves of Scrophularia Nodosa, an iridoid-producing plant species. High-resolution mass spectrometry coupled to computational metabolomic approaches was employed for the detection of aza-iridoid bioconversion products.


Assuntos
Iridoides , Scrophularia , Iridoides/química , Espectrometria de Massas , Folhas de Planta , Scrophularia/química
7.
Org Biomol Chem ; 20(46): 9069-9084, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36367191

RESUMO

The two-faced reactivity of N-allenamides allows regio- and stereo-controlled functionalization at the α-, ß- and γ-positions of the nitrogen atom. The contingency to obtain either proximal or distal adducts makes these substrates essential for the construction of complex heterocyclic scaffolds. This review covers the recent advances made in the development of new methods involving amination and alkoxylation reactions on N-allenamides leading to a broad array of N-heterocycles. The syntheses reported herein are classified based on their reaction type. In addition, mechanistic perceptions are provided for the majority of the discussed transformations.


Assuntos
Nitrogênio , Catálise , Aminação , Nitrogênio/química
8.
J Nat Prod ; 85(8): 1976-1992, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35776904

RESUMO

Strigolactones (SLs) are plant hormones exuded in the rhizosphere with a signaling role for the development of arbuscular mycorrhizal (AM) fungi and as stimulants of seed germination of the parasitic weeds Orobanche, Phelipanche, and Striga, the most threatening weeds of major crops worldwide. Phelipanche ramosa is present mainly on rape, hemp, and tobacco in France. P. ramosa 2a preferentially attacks hemp, while P. ramosa 1 attacks rapeseed. The recently isolated cannalactone (14) from hemp root exudates has been characterized as a noncanonical SL that selectively stimulates the germination of P. ramosa 2a seeds in comparison with P. ramosa 1. In the present work, (-)-solanacol (5), a canonical orobanchol-type SL exuded by tobacco and tomato, was established to possess a remarkable selective germination stimulant activity for P. ramosa 2a seeds. Two cannalactone analogues, named (±)-SdL19 and (±)-SdL118, have been synthesized. They have an unsaturated acyclic carbon chain with a tertiary hydroxy group and a methyl or a cyclopropyl group instead of a cyclohexane A-ring, respectively. (±)-SdL analogues are able to selectively stimulate P. ramosa 2a, revealing that these minimal structural elements are key for this selective bioactivity. In addition, (±)-SdL19 is able to inhibit shoot branching in Pisum sativum and Arabidopsis thaliana and induces hyphal branching in the AM fungus Rhizophagus irregularis, like SLs.


Assuntos
Arabidopsis , Micorrizas , Orobanchaceae , Orobanche , Striga , Germinação , Compostos Heterocíclicos com 3 Anéis , Lactonas/química , Lactonas/farmacologia , Raízes de Plantas/química , Plantas Daninhas , Sementes
9.
New Phytol ; 229(6): 3253-3268, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33253456

RESUMO

Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.


Assuntos
Arabidopsis , Herbicidas , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/genética
10.
Org Biomol Chem ; 17(23): 5688-5692, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31134243

RESUMO

An operationally simple synthesis of activated ynesulfonamides and enesulfonamides is described. Ynesulfonamides can be obtained through reaction of sulfonylamides with activated bromoalkynes and Triton B in a short time at room temperature. Likewise, terminal alkynes react with sulfonylamides to provide enesulfonamides. Z/E enesulfonamides can be transformed exclusively into E enesulfonamides.

11.
Plant Cell ; 27(10): 2972-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26475865

RESUMO

The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests.


Assuntos
Arabidopsis/enzimologia , Cicloexanóis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/enzimologia , Inseticidas/metabolismo , Monoterpenos/metabolismo , Compostos de Tritil/metabolismo , Monoterpenos Acíclicos , Álcoois/química , Álcoois/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cicloexanóis/química , Sistema Enzimático do Citocromo P-450/genética , Flores/genética , Flores/imunologia , Genes Reporter , Insetos/fisiologia , Inseticidas/química , Monoterpenos/química , Oxirredução , Estereoisomerismo , Compostos de Tritil/química
12.
New Phytol ; 213(1): 264-274, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27560385

RESUMO

Monoterpenes are important constituents of the aromas of food and beverages, including wine. Among monoterpenes in wines, wine lactone has the most potent odor. It was proposed to form via acid-catalyzed cyclization of (E)-8-carboxylinalool during wine maturation. It only reaches very low concentrations in wine but its extremely low odor detection threshold makes it an important aroma compound. Using LC-MS/MS, we show here that the (E)-8-carboxylinalool content in wines correlates with their wine lactone content and estimate the kinetic constant for the very slow formation of wine lactone from (E)-8-carboxylinalool. We show that (E)-8-carboxylinalool is accumulated as a glycoside in grape (Vitis vinifera) berries and that one of the cytochrome P450 enzymes most highly expressed in maturing berries, CYP76F14, efficiently oxidizes linalool to (E)-8-carboxylinalool. Our analysis of (E)-8-carboxylinalool in Riesling × Gewurztraminer grapevine progeny established that the CYP76F14 gene co-locates with a quantitative trait locus for (E)-8-carboxylinalool content in grape berries. Our data support the role of CYP76F14 as the major (E)-8-carboxylinalool synthase in grape berries and the role of (E)-8-carboxylinalool as a precursor to wine lactone in wine, providing new insights into wine and grape aroma metabolism, and new methods for food and aroma research and production.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Lactonas/metabolismo , Odorantes/análise , Vitis/enzimologia , Vinho/análise , Monoterpenos Acíclicos , Frutas/enzimologia , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lactonas/química , Monoterpenos/química , Monoterpenos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Nicotiana/metabolismo , Vitis/genética
13.
Plant Cell ; 25(11): 4640-57, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24285789

RESUMO

The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (-)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/metabolismo , Monoterpenos/metabolismo , Monoterpenos Acíclicos , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Mutação , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Nicotiana/genética
14.
Angew Chem Int Ed Engl ; 55(17): 5170-4, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27000724

RESUMO

Cyclization of silylenolether-ynesulfonamides proceeds at ambient temperature under mild reaction conditions under silver catalysis. Bridged compounds were obtained exclusively through 7-exo-dig reactions. The protocol is applicable to a wide range of substrates, thus leading to azabicyclic frameworks.

15.
Plant Physiol ; 166(3): 1149-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25082892

RESUMO

Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed high rates of CYP76C gene duplication and loss in Brassicaceae, suggesting the association of the CYP76C subfamily with species-specific adaptive functions. Gene differential expression and enzyme functional specialization in Arabidopsis thaliana, including metabolism of different monoterpenols and formation of different products, support this hypothesis. In addition to linalool metabolism, CYP76C1, CYP76C2, and CYP76C4 metabolized herbicides belonging to the class of phenylurea. Their ectopic expression in the whole plant conferred herbicide tolerance. CYP76Cs from A. thaliana. thus provide a first example of promiscuous cytochrome P450 enzymes endowing effective metabolism of both natural and xenobiotic compounds. Our data also suggest that the CYP76C gene family provides a suitable genetic background for a quick evolution of herbicide resistance.


Assuntos
Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Herbicidas/metabolismo , Família Multigênica , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Genômica , Monoterpenos/metabolismo , Oxirredução , Compostos de Fenilureia/metabolismo , Filogenia
16.
J Exp Bot ; 66(13): 3879-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903915

RESUMO

Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1-JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Botrytis/fisiologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Botrytis/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Isoleucina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Oxirredução , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo
17.
Org Biomol Chem ; 13(7): 2153-6, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25533530

RESUMO

Sequential deprotonation, isomerization of 3-alkynoates and subsequent 1,2-addition led to bicyclic allenoate in the presence of a catalytic amount of Cs2CO3. Cyclization proceeds in a totally stereoselective manner in the case of the two-carbon linker chain. A one-pot reaction starting from alkynyl ketones afforded tricyclic fused ring systems with good yields.

18.
J Biol Chem ; 288(44): 31701-14, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24052260

RESUMO

Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-L-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Folhas de Planta/enzimologia , Amidoidrolases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Isoleucina/genética , Isoleucina/metabolismo , Oxirredução , Folhas de Planta/genética
19.
J Biol Chem ; 287(9): 6296-306, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22215670

RESUMO

The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Isoleucina/análogos & derivados , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Genótipo , Isoleucina/metabolismo , Metabolismo/fisiologia , Nucleotidiltransferases/metabolismo , Oxirredução , Folhas de Planta/enzimologia , Transdução de Sinais/fisiologia
20.
Org Biomol Chem ; 11(24): 4025-9, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23657214

RESUMO

A cross aldol reaction between [(S)-(-)] or [(R)-(+)]-benzyloxypropanal and silyl enol ethers derived from bicyclo[3.2.0]alkanones was carried out in the presence of TiCl4, leading with total stereoselectivity to a 1 : 1 mixture of enantiomerically pure diastereomers isolated in 81% overall yield. Thus, 5 stereogenic centers could be created starting from one. Furthermore, an efficient access to an enantiomerically pure tricyclo[5.3.0.0(2,6)]decane scaffold was possible via a 4 step reaction sequence.


Assuntos
Álcoois/síntese química , Éteres/síntese química , Cetonas/química , Álcoois/química , Cristalografia por Raios X , Éteres/química , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA