Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Nat Rev Mol Cell Biol ; 25(10): 822-840, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39026037

RESUMO

Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction-oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans.


Assuntos
NAD , NAD/metabolismo , Humanos , Animais , Oxirredução , Niacinamida/metabolismo , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/metabolismo , Compostos de Piridínio
2.
Nat Immunol ; 20(1): 50-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478397

RESUMO

Recent advances highlight a pivotal role for cellular metabolism in programming immune responses. Here, we demonstrate that cell-autonomous generation of nicotinamide adenine dinucleotide (NAD+) via the kynurenine pathway (KP) regulates macrophage immune function in aging and inflammation. Isotope tracer studies revealed that macrophage NAD+ derives substantially from KP metabolism of tryptophan. Genetic or pharmacological blockade of de novo NAD+ synthesis depleted NAD+, suppressed mitochondrial NAD+-dependent signaling and respiration, and impaired phagocytosis and resolution of inflammation. Innate immune challenge triggered upstream KP activation but paradoxically suppressed cell-autonomous NAD+ synthesis by limiting the conversion of downstream quinolinate to NAD+, a profile recapitulated in aging macrophages. Increasing de novo NAD+ generation in immune-challenged or aged macrophages restored oxidative phosphorylation and homeostatic immune responses. Thus, KP-derived NAD+ operates as a metabolic switch to specify macrophage effector responses. Breakdown of de novo NAD+ synthesis may underlie declining NAD+ levels and rising innate immune dysfunction in aging and age-associated diseases.


Assuntos
Envelhecimento/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/imunologia , Macrófagos/fisiologia , Mitocôndrias/metabolismo , NAD/metabolismo , Animais , Células Cultivadas , Homeostase , Imunidade Inata , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação Oxidativa , Pentosiltransferases/genética , Fagocitose , Transdução de Sinais , Triptofano/metabolismo
3.
Nature ; 588(7836): 174-179, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906142

RESUMO

Mitochondria require nicotinamide adenine dinucleotide (NAD+) to carry out the fundamental processes that fuel respiration and mediate cellular energy transduction. Mitochondrial NAD+ transporters have been identified in yeast and plants1,2, but their existence in mammals remains controversial3-5. Here we demonstrate that mammalian mitochondria can take up intact NAD+, and identify SLC25A51 (also known as MCART1)-an essential6,7 mitochondrial protein of previously unknown function-as a mammalian mitochondrial NAD+ transporter. Loss of SLC25A51 decreases mitochondrial-but not whole-cell-NAD+ content, impairs mitochondrial respiration, and blocks the uptake of NAD+ into isolated mitochondria. Conversely, overexpression of SLC25A51 or SLC25A52 (a nearly identical paralogue of SLC25A51) increases mitochondrial NAD+ levels and restores NAD+ uptake into yeast mitochondria lacking endogenous NAD+ transporters. Together, these findings identify SLC25A51 as a mammalian transporter capable of importing NAD+ into mitochondria.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Respiração Celular/genética , Teste de Complementação Genética , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Cátions Orgânicos/deficiência , Proteínas de Transporte de Cátions Orgânicos/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Chem Res Toxicol ; 37(2): 248-258, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38198686

RESUMO

Pyridone-containing adenine dinucleotides, ox-NAD, are formed by overoxidation of nicotinamide adenine dinucleotide (NAD+) and exist in three distinct isomeric forms. Like the canonical nucleosides, the corresponding pyridone-containing nucleosides (PYR) are chemically stable, biochemically versatile, and easily converted to nucleotides, di- and triphosphates, and dinucleotides. The 4-PYR isomer is often reported with its abundance increasing with the progression of metabolic diseases, age, cancer, and oxidative stress. Yet, the pyridone-derived nucleotides are largely under-represented in the literature. Here, we report the efficient synthesis of the series of ox-NAD and pyridone nucleotides and measure the abundance of ox-NAD in biological specimens using liquid chromatography coupled with mass spectrometry (LC-MS). Overall, we demonstrate that all three forms of PYR and ox-NAD are found in biospecimens at concentrations ranging from nanomolar to midmicromolar and that their presence affects the measurements of NAD(H) concentrations when standard biochemical redox-based assays are applied. Furthermore, we used liver extracts and 1H NMR spectrometry to demonstrate that each ox-NAD isomer can be metabolized to its respective PYR isomer. Together, these results suggest a need for a better understanding of ox-NAD in the context of human physiology since these species are endogenous mimics of NAD+, the key redox cofactor in metabolism and bioenergetics maintenance.


Assuntos
NAD , Nucleotídeos , Humanos , NAD/metabolismo , Nucleotídeos/metabolismo , Nucleosídeos/metabolismo , Metabolismo Energético , Piridonas
5.
Inflamm Res ; 73(5): 739-751, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493256

RESUMO

OBJECTIVES: Cellular NAD+ declines in inflammatory states associated with increased activity of the leukocyte-expressed NADase CD38. In this study, we tested the potential role of therapeutically targeting CD38 and NAD+ in gout. METHODS: We studied cultured mouse wild type and CD38 knockout (KO) murine bone marrow derived macrophages (BMDMs) stimulated by monosodium urate (MSU) crystals and used the air pouch gouty inflammation model. RESULTS: MSU crystals induced CD38 in BMDMs in vitro, associated with NAD+ depletion, and IL-1ß and CXCL1 release, effects reversed by pharmacologic CD38 inhibitors (apigenin, 78c). Mouse air pouch inflammatory responses to MSU crystals were blunted by CD38 KO and apigenin. Pharmacologic CD38 inhibition suppressed MSU crystal-induced NLRP3 inflammasome activation and increased anti-inflammatory SIRT3-SOD2 activity in macrophages. BMDM RNA-seq analysis of differentially expressed genes (DEGs) revealed CD38 to control multiple MSU crystal-modulated inflammation pathways. Top DEGs included the circadian rhythm modulator GRP176, and the metalloreductase STEAP4 that mediates iron homeostasis, and promotes oxidative stress and NF-κB activation when it is overexpressed. CONCLUSIONS: CD38 and NAD+ depletion are druggable targets controlling the MSU crystal- induced inflammation program. Targeting CD38 and NAD+ are potentially novel selective molecular approaches to limit gouty arthritis.


Assuntos
ADP-Ribosil Ciclase 1 , Inflamação , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD , Ácido Úrico , Animais , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Inflamação/tratamento farmacológico , Camundongos , NAD/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Células Cultivadas , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Artrite Gotosa/genética , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos
6.
J Biol Chem ; 298(12): 102615, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265580

RESUMO

Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.


Assuntos
NAD , Purina-Núcleosídeo Fosforilase , Humanos , Camundongos , Animais , NAD/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Compostos de Piridínio , Mamíferos/metabolismo
7.
Chem Res Toxicol ; 35(4): 616-625, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35324152

RESUMO

Dihydroxyacetone (DHA) is a major byproduct of e-cigarette combustion and is the active ingredient in sunless tanning products. Mounting evidence points to its damaging effects on cellular functions. While developing a simple synthetic route to monomeric [13C3]DHA for flux metabolic studies that compared DHA and glyceraldehyde (GA) metabolism, we uncovered that solid DHA ages upon storage and differences in the relative abundance of each of its isomer occur when reconstituted in an aqueous solution. While all three of the dimeric forms of DHA ultimately resolve to the ketone and hydrated forms of monomeric DHA once in water at room temperature, these species require hours rather than minutes to reach an equilibrium favoring the monomeric species. Consequently, when used in bolus or flux experiments, the relative abundance of each isomer and its effects at the time of application is dependent on the initial DHA isomeric composition and concentration, and time of equilibration in solution before use. Here, we make recommendations for the more consistent handling of DHA as we report conditions that ensure that DHA is present in its monomeric form while in solutions, conditions used in an isotopic tracing study that specifically compared monomeric DHA and GA metabolism in cells.


Assuntos
Di-Hidroxiacetona , Sistemas Eletrônicos de Liberação de Nicotina , Isomerismo , Soluções
8.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233167

RESUMO

Pyridone adenine dinucleotides (ox-NADs) are redox inactive derivatives of the enzyme cofactor and substrate nicotinamide adenine dinucleotide (NAD) that have a carbonyl group at the C2, C4, or C6 positions of the nicotinamide ring. These aberrant cofactor analogs accumulate in cells under stress and are potential inhibitors of enzymes that use NAD(H). We studied the conformational landscape of ox-NADs in solution using molecular dynamics simulations. Compared to NAD+ and NADH, 2-ox-NAD and 4-ox-NAD have an enhanced propensity for adopting the anti conformation of the pyridone ribose group, whereas 6-ox-NAD exhibits greater syn potential. Consequently, 2-ox-NAD and 4-ox-NAD have increased preference for folding into compact conformations, whereas 6-ox-NAD is more extended. ox-NADs have distinctive preferences for the orientation of the pyridone amide group, which are driven by intramolecular hydrogen bonding and steric interactions. These conformational preferences are compared to those of protein-bound NAD(H). Our results may help in identifying enzymes targeted by ox-NADs.


Assuntos
Simulação de Dinâmica Molecular , NAD , Adenina , Amidas , Dapsona/análogos & derivados , NAD/metabolismo , Niacinamida , Piridonas , Ribose
9.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630705

RESUMO

We report the synthesis of vitamin B1, B2, and B3 derived nucleotides and dinucleotides generated either through mechanochemical or solution phase chemistry. Under the explored conditions, adenosine and thiamine proved to be particularly amenable to milling conditions. Following optimization of the chemistry related to the formation pyrophosphate bonds, mixed dinucleotides of adenine and thiamine (vitamin B1), riboflavin (vitamin B2), nicotinamide riboside and 3-carboxamide 4-pyridone riboside (both vitamin B3 derivatives) were generated in good yields. Furthermore, we report an efficient synthesis of the MW+4 isotopologue of NAD+ for which deuterium incorporation is present on either side of the dinucleotidic linkage, poised for isotopic tracing experiments by mass spectrometry. Many of these mixed species are novel and present unexplored possibilities to simultaneously enhance or modulate cofactor transporters and enzymes of independent biosynthetic pathways.


Assuntos
Niacina , Niacina/metabolismo , Riboflavina , Tiamina/análise
10.
Proc Natl Acad Sci U S A ; 115(42): 10654-10659, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30257945

RESUMO

Axon degeneration, a hallmark of chemotherapy-induced peripheral neuropathy (CIPN), is thought to be caused by a loss of the essential metabolite nicotinamide adenine dinucleotide (NAD+) via the prodegenerative protein SARM1. Some studies challenge this notion, however, and suggest that an aberrant increase in a direct precursor of NAD+, nicotinamide mononucleotide (NMN), rather than loss of NAD+, is responsible. In support of this idea, blocking NMN accumulation in neurons by expressing a bacterial NMN deamidase protected axons from degeneration. We hypothesized that protection could similarly be achieved by reducing NMN production pharmacologically. To achieve this, we took advantage of an alternative pathway for NAD+ generation that goes through the intermediate nicotinic acid mononucleotide (NAMN), rather than NMN. We discovered that nicotinic acid riboside (NAR), a precursor of NAMN, administered in combination with FK866, an inhibitor of the enzyme nicotinamide phosphoribosyltransferase that produces NMN, protected dorsal root ganglion (DRG) axons against vincristine-induced degeneration as well as NMN deamidase. Introducing a different bacterial enzyme that converts NAMN to NMN reversed this protection. Collectively, our data indicate that maintaining NAD+ is not sufficient to protect DRG neurons from vincristine-induced axon degeneration, and elevating NMN, by itself, is not sufficient to cause degeneration. Nonetheless, the combination of FK866 and NAR, which bypasses NMN formation, may provide a therapeutic strategy for neuroprotection.


Assuntos
Acrilamidas/farmacologia , NAD/metabolismo , Degeneração Neural/prevenção & controle , Neurônios/efeitos dos fármacos , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/análogos & derivados , Piperidinas/farmacologia , Vincristina/toxicidade , Animais , Antineoplásicos Fitogênicos/toxicidade , Combinação de Medicamentos , Francisella tularensis/enzimologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Niacinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos de Piridínio
11.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638936

RESUMO

Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD+ also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health and disease, studying NAD+ metabolism has become essential to monitor genetic- and/or drug-induced perturbations related to metabolic status and diseases (such as ageing, cancer or obesity), and its possible therapies. Here, we present a strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of the NAD+ metabolome in biological samples. In this method, hydrophilic interaction chromatography (HILIC) was used to separate a total of 18 metabolites belonging to pathways leading to NAD+ biosynthesis, including precursors, intermediates and catabolites. As redox cofactors are known for their instability, a sample preparation procedure was developed to handle a variety of biological matrices: cell models, rodent tissues and biofluids, as well as human biofluids (urine, plasma, serum, whole blood). For clinical applications, quantitative LC-MS/MS for a subset of metabolites was demonstrated for the analysis of the human whole blood of nine volunteers. Using this developed workflow, our methodology allows studying NAD+ biology from mechanistic to clinical applications.


Assuntos
Metaboloma , NAD/biossíntese , Plasma/metabolismo , Soro/metabolismo , Espectrometria de Massas em Tandem/métodos , Urina/fisiologia , Animais , Doadores de Sangue , Cromatografia Líquida/métodos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Monitorização Fisiológica/métodos , Oxirredução , Projetos Piloto , Plasma/química , Soro/química , Urina/química
12.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498933

RESUMO

As catabolites of nicotinamide possess physiological relevance, pyridones are often included in metabolomics measurements and associated with pathological outcomes in acute kidney injury (AKI). Pyridones are oxidation products of nicotinamide, its methylated form, and its ribosylated form. While they are viewed as markers of over-oxidation, they are often wrongly reported or mislabeled. To address this, we provide a comprehensive characterization of these catabolites of vitamin B3, justify their nomenclature, and differentiate between the biochemical pathways that lead to their generation. Furthermore, we identify an enzymatic and a chemical process that accounts for the formation of the ribosylated form of these pyridones, known to be cytotoxic. Finally, we demonstrate that the ribosylated form of one of the pyridones, the 4-pyridone-3-carboxamide riboside (4PYR), causes HepG3 cells to die by autophagy; a process that occurs at concentrations that are comparable to physiological concentrations of this species in the plasma in AKI patients.


Assuntos
NAD/metabolismo , Niacinamida/metabolismo , Piridonas/metabolismo , Autofagia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Piridonas/química , Piridonas/farmacologia , Piridonas/uso terapêutico
13.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573263

RESUMO

Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.


Assuntos
Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/metabolismo , Ribonucleosídeos/metabolismo , Envelhecimento/metabolismo , Citosol/metabolismo , Proteínas de Transporte de Nucleosídeo Equilibrativas/genética , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/genética , Metabolômica , NAD/análise , NAD/metabolismo , Niacinamida/análise , Niacinamida/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Fosforilação/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Compostos de Piridínio/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleosídeos/análise
14.
Org Biomol Chem ; 18(15): 2877-2885, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32236231

RESUMO

The nutraceutical Nicotinamide Riboside (NR), an efficacious biosynthetic precursor to NAD, is readily metabolized by the purine nucleoside phosphorylase (PNP). Access to the PNP-stable versions of NR is difficult because the glycosidic bond of NR is easily cleaved. Unlike NR, NRH, the reduced form of NR, offers sufficient chemical stability to allow the successful functionalisation of the ribosyl-moiety. Here, we report on a series of NRH and NR derived amino acid conjugates, generated in good to excellent yields and show that O5'-esterification prevents the PNP-catalyzed phosphorolysis of these NR prodrugs.


Assuntos
Aminoácidos/metabolismo , Niacinamida/análogos & derivados , Pró-Fármacos/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Aminoácidos/química , Biocatálise , Estrutura Molecular , Niacinamida/química , Niacinamida/metabolismo , Pró-Fármacos/química , Purina-Núcleosídeo Fosforilase/química , Compostos de Piridínio
15.
Biochem Soc Trans ; 47(1): 131-147, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30559273

RESUMO

The functional cofactors derived from vitamin B3 are nicotinamide adenine dinucleotide (NAD+), its phosphorylated form, nicotinamide adenine dinucleotide phosphate (NADP+) and their reduced forms (NAD(P)H). These cofactors, together referred as the NAD(P)(H) pool, are intimately implicated in all essential bioenergetics, anabolic and catabolic pathways in all forms of life. This pool also contributes to post-translational protein modifications and second messenger generation. Since NAD+ seats at the cross-road between cell metabolism and cell signaling, manipulation of NAD+ bioavailability through vitamin B3 supplementation has become a valuable nutritional and therapeutic avenue. Yet, much remains unexplored regarding vitamin B3 metabolism. The present review highlights the chemical diversity of the vitamin B3-derived anabolites and catabolites of NAD+ and offers a chemical perspective on the approaches adopted to identify, modulate and measure the contribution of various precursors to the NAD(P)(H) pool.


Assuntos
Metaboloma/fisiologia , Niacinamida/metabolismo , Animais , Humanos , Metaboloma/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia
16.
Chem Res Toxicol ; 32(8): 1722-1731, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31328504

RESUMO

Dihydroxyacetone phosphate (DHAP) is the endogenous byproduct of fructose metabolism. Excess DHAP in cells can induce advanced glycation end products and oxidative stress. Dihydroxyacetone (DHA) is the triose precursor to DHAP. DHA is used as the active ingredient in sunless tanning products, including aerosolized spray tans, and is formed by the combustion of solvents found in electronic cigarettes. Human exposure to DHA has been increasing as the popularity of sunless tanning products and electronic cigarettes has grown. Topically applied DHA is absorbed through the viable layers of the skin and into the bloodstream. Exogenous exposure to DHA is cytotoxic in immortalized keratinocytes and melanoma cells with cell cycle arrest induced within 24 h and cell death occurring by apoptosis at consumer-relevant concentrations of DHA within 72 h. Less is known about systemic exposures to DHA that occur following absorption through skin, and now through inhalation of the aerosolized DHA used in spray tanning. In the present study, HEK293T cells were exposed to consumer-relevant concentrations of DHA to examine the cytotoxicity of systemic exposures. HEK293T cells were sensitive to consumer-relevant doses of DHA with an IC50 value of 2.4 ± 0.3 mM. However, cell cycle arrest did not begin until 48 h after DHA exposure. DHA-exposed cells showed altered metabolic activity with decreased mitochondrial function and decreased lactate and ATP production observed within 24 h of exposure. Autofluorescent imaging and NAD+ sensors also revealed an imbalance in the redox cofactors NAD+/NADH within 24 h of exposure. Cell death occurred by autophagy indicated by increases in LC3B and SIRT1. Despite DHA's ability to be converted to DHAP and integrated into metabolic pathways, the metabolic dysfunction and starvation responses observed in the HEK293T cells indicate that DHA does not readily contribute to the energetic pool in these cells.


Assuntos
Autofagia/efeitos dos fármacos , Di-Hidroxiacetona/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , NAD/química , NAD/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/análise , Células HEK293 , Humanos , Mitocôndrias/metabolismo , NAD/análise , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Beilstein J Org Chem ; 15: 401-430, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873226

RESUMO

The ß-anomeric form of nicotinamide riboside (NR+) is a precursor for nicotinamide adenine dinucleotide (NAD+), a redox cofactor playing a critical role in cell metabolism. Recently, it has been demonstrated that its chloride salt (NR+Cl-) has beneficial effects, and now NR+Cl- is available as a dietary supplement. Syntheses and studies of analogues and derivatives of NR+ are of high importance to unravel the role of NR+ in biochemical processes in living cells and to elaborate the next generation of NR+ derivatives and conjugates with the view of developing novel drug and food supplement candidates. This review provides an overview of the synthetic approaches, the chemical properties, and the structural and functional modifications which have been undertaken on the nicotinoyl riboside scaffold.

18.
Int J Mol Sci ; 19(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563212

RESUMO

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form, NADP, are the major coenzymes of redox reactions in central metabolic pathways. Nicotinamide adenine dinucleotide is also used to generate second messengers, such as cyclic ADP-ribose, and serves as substrate for protein modifications including ADP-ribosylation and protein deacetylation by sirtuins. The regulation of these metabolic and signaling processes depends on NAD availability. Generally, human cells accomplish their NAD supply through biosynthesis using different forms of vitamin B3: Nicotinamide (Nam) and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR). These precursors are converted to the corresponding mononucleotides NMN and NAMN, which are adenylylated to the dinucleotides NAD and NAAD, respectively. Here, we have developed an NMR-based experimental approach to detect and quantify NAD(P) and its biosynthetic intermediates in human cell extracts. Using this method, we have determined NAD, NADP, NMN and Nam pools in HEK293 cells cultivated in standard culture medium containing Nam as the only NAD precursor. When cells were grown in the additional presence of both NAR and NR, intracellular pools of deamidated NAD intermediates (NAR, NAMN and NAAD) were also detectable. We have also tested this method to quantify NAD+ in human platelets and erythrocytes. Our results demonstrate that ¹H NMR spectroscopy provides a powerful method for the assessment of the cellular NAD metabolome.


Assuntos
Técnicas de Cultura de Células/métodos , Metabolômica/métodos , NAD/análise , Plaquetas/química , Eritrócitos/química , Células HEK293 , Humanos , Redes e Vias Metabólicas , NADP/análise , Niacina/análise , Niacinamida/análise , Espectroscopia de Prótons por Ressonância Magnética
19.
J Biol Chem ; 290(45): 27124-27137, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26385918

RESUMO

NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.


Assuntos
NAD/biossíntese , Ribonucleosídeos/biossíntese , 5'-Nucleotidase/metabolismo , Citocinas/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Niacina/metabolismo , Niacinamida/análogos & derivados , Niacinamida/biossíntese , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Pentosiltransferases/metabolismo , Fosforilação , Compostos de Piridínio , Proteínas Recombinantes/metabolismo , Ribonucleosídeos/metabolismo , Transdução de Sinais , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA