Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(24): 12194-201, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24817571

RESUMO

The catalytic activity and hydrocarbon selectivity in electrochemical carbon dioxide (CO2) reduction on cuprous oxide (Cu2O) derived copper nanoparticles is discussed. Cuprous oxide films with [100], [110] and [111] orientation and variable thickness were electrodeposited by reduction of copper(ii) lactate on commercially available copper plates. After initiation of the electrochemical CO2 reduction by these oxide structures, the selectivity of the process was found to largely depend on the parent Cu2O film thickness, rather than on the initial crystal orientation. Starting with thin Cu2O films, besides CO and hydrogen, selective formation of ethylene is observed with very high ethylene-to-methane ratios (∼8 to 12). In addition to these products, thicker Cu2O films yield a remarkably large amount of ethane. Long term Faradaic efficiency analysis of hydrocarbons shows no sign of deactivation of the electrodes after 5 hours of continuous experiment. Online mass spectroscopy studies combined with X-ray diffraction data suggest the reduction of the Cu2O films in the presence of CO2, generating a nanoparticulate Cu morphology, prior to the production of hydrogen, CO, and hydrocarbons. Optimizing coverage, number density and size of the copper nanoparticles, as well as local surface pH, may allow highly selective formation of the industrially important product ethylene.

2.
ACS Sustain Chem Eng ; 7(5): 5034-5044, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30873301

RESUMO

H-BiVO4-x :Mo was successfully deposited on microwire-structured silicon substrates, using indium tin oxide (ITO) as an interlayer and BiOI prepared by electrodeposition as precursor. Electrodeposition of BiOI, induced by the electrochemical reduction of p-benzoquinone, appeared to proceed through three stages, being nucleation of particles at the base and bottom of the microwire arrays, followed by rapid (homogeneous) growth, and termination by increasing interfacial resistances. Variations in charge density and morphology as a function of spacing of the microwires are explained by (a) variations in mass transfer limitations, most likely associated with the electrochemical reduction of p-benzoquinone, and (b) inhomogeneity in ITO deposition. Unexpectedly, H-BiVO4-x :Mo on microwire substrates (4 µm radius, 4 to 20 µm spacing, and 5 to 16 µm length) underperformed compared to H-BiVO4-x :Mo on flat surfaces in photocatalytic tests employing sulfite (SO3 2-) oxidation in a KPi buffer solution at pH 7.0. While we cannot exclude optical effects, or differences in material properties on the nanoscale, we predominantly attribute this to detrimental diffusion limitations of the redox species within the internal volume of the microwire arrays, in agreement with existing literature and the observations regarding the electrodeposition of BiOI. Our results may assist in developing high-efficiency PEC devices.

3.
Adv Mater ; 28(7): 1400-5, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26866621

RESUMO

The spatioselective functionalization of silicon microwires with axial p/n junctions is achieved using the electronic properties of the junction. (Photo)electrochemical deposition of metals is demonstrated at the bottom and top of the wires in the dark and light, respectively. The junction depletion layer remains unmodified, which allows its visualization and comparison with theoretical calculations.

4.
Nat Commun ; 7: 10748, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888578

RESUMO

Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas-liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduction up to 85% are obtained. Moreover, the carbon monoxide formation rate is at least one order of magnitude larger when compared with state-of-the-art nanocrystalline copper electrodes. Copper hollow fibre electrodes can be prepared via a facile method that is compatible with existing large-scale production processes. The results of this study may inspire the development of new types of microtubular electrodes for electrochemical processes in which at least one gas-phase reactant is involved, such as in fuel cell technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA