Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Clin Genet ; 105(6): 676-682, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38356193

RESUMO

Biallelic disease-causing variants in the ALPK3 gene were first identified in children presenting with a severe cardiomyopathy. More recently, it was shown that carriers of heterozygous ALPK3 null variants are at risk of developing hypertrophic cardiomyopathy (HCM) with an adult onset. Since the number of reported ALPK3 patients is small, the mutational spectrum and clinical data are not fully described. In this multi-centric study, we described the molecular and clinical spectrum of a large cohort of ALPK3 patients. Genetic testing using targeted next generation sequencing was performed in 16 183 cardiomyopathy index cases. Thirty-six patients carried at least one null ALPK3 variant. The five paediatric patients carried two ALPK3 variants, all presented an HCM phenotype with severe outcomes (one transplantation, one heart failure and one cardiac arrest). The 31 adult patients carried heterozygous variants and the main phenotype was HCM (n = 26/31); including 15% (n = 4) presented with an apical or a concentric form of hypertrophy. Reporting a large cohort of ALPK3 patients, this collaborative work confirmed a strong association with HCM and suggesting his screening in the context of idiopathic HCM.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas Musculares , Fenótipo , Proteínas Quinases , Humanos , Cardiomiopatia Hipertrófica/genética , Masculino , Feminino , Adulto , Criança , Adolescente , França/epidemiologia , Pessoa de Meia-Idade , Prevalência , Mutação , Pré-Escolar , Predisposição Genética para Doença , Estudos de Coortes , Heterozigoto , Adulto Jovem , Testes Genéticos , Lactente , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Idoso
2.
Europace ; 25(1): 101-111, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35942675

RESUMO

AIMS: Ventricular fibrillation (VF) occurring in the acute phase of ST-elevation myocardial infarction (STEMI) is the leading cause of sudden cardiac death worldwide. Several studies showed that reduced connexin 43 (Cx43) expression and reduced conduction velocity increase the risk of VF in acute myocardial infarction (MI). Furthermore, genetic background might predispose individuals to primary VF (PVF). The primary objective was to evaluate the presence of GJA1 variants in STEMI patients. The secondary objective was to evaluate the arrhythmogenic impact of GJA1 variants in STEMI patients with VF. METHODS AND RESULTS: The MAP-IDM prospective cohort study included 966 STEMI patients and was designed to identify genetic predisposition to VF. A total of 483 (50.0%) STEMI patients with PVF were included. The presence of GJA1 variants increased the risk of VF in STEMI patients [from 49.1 to 70.8%, P = 0.0423; odds ratio (OR): 0.40; 95% confidence interval: 0.16-0.97; P = 0.04]. The risk of PVF decreased with beta-blocker intake (from 53.5 to 44.8%, P = 0.0085), atrial fibrillation (from 50.7 to 26.4%, P = 0.0022), and with left ventricular ejection fraction >50% (from 60.2 to 41.4%, P < 0.0001). Among 16 GJA1 variants, three novel heterozygous missense variants were identified in three patients: V236I, H248R, and I327M. In vitro studies of these variants showed altered Cx43 localization and decreased cellular communication, mainly during acidosis. CONCLUSION: Connexin 43 variants are associated with increased VF susceptibility in STEMI patients. Restoring Cx43 function may be a potential therapeutic target to prevent PVF in patients with acute MI. CLINICAL TRIAL REGISTRATION: Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT00859300.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/genética , Fibrilação Ventricular/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Conexina 43/genética , Estudos Prospectivos , Volume Sistólico , Função Ventricular Esquerda , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Fatores de Risco
3.
Neth Heart J ; 31(7-8): 300-307, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37488328

RESUMO

INTRODUCTION: The MYH7 c.5135G > A p.(Arg1712Gln) variant has been identified in several patients worldwide and is classified as pathogenic in the ClinVar database. We aimed to delineate its associated phenotype and evaluate a potential founder effect. METHODS: We retrospectively collected clinical and genetic data of 22 probands and 74 family members from an international cohort. RESULTS: In total, 53 individuals carried the MYH7 p.(Arg1712Gln) variant, of whom 38 (72%) were diagnosed with hypertrophic cardiomyopathy (HCM). Mean age at HCM diagnosis was 48.8 years (standard deviation: 18.1; range: 8-74). The clinical presentation ranged from asymptomatic HCM to arrhythmias (atrial fibrillation and malignant ventricular arrhythmias). Aborted sudden cardiac death (SCD) leading to the diagnosis of HCM occurred in one proband at the age of 68 years, and a family history of SCD was reported by 39% (5/13) probands. Neither heart failure deaths nor heart transplants were reported. Women had a generally later-onset disease, with 14% of female carriers diagnosed with HCM at age 50 years compared with 54% of male carriers. In both sexes, the disease was fully penetrant by age 75 years. Haplotypes were reconstructed for 35 patients and showed a founder effect in a subset of patients. CONCLUSION: MYH7 p.(Arg1712Gln) is a pathogenic founder variant with a consistent HCM phenotype that may present with delayed penetrance. This suggested that clinical follow-up should be pursued after the seventh decade in healthy carriers and that longer intervals between screening may be justified in healthy women < 30 years.

4.
Hum Mutat ; 41(2): 465-475, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31730716

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy, historically believed to affect 1 of 500 people. MYBPC3 pathogenic variations are the most frequent cause of familial HCM and more than 90% of them introduce a premature termination codon. The current study aims to determine the prevalence of deep intronic MYBPC3 pathogenic variations that could lead to splice mutations. To improve molecular diagnosis, a next-generation sequencing (NGS) workflow based on whole MYBPC3 sequencing of a cohort of 93 HCM patients, for whom no putatively causative point mutations were identified after NGS sequencing of a panel of 48 cardiomyopathy-causing genes, was performed. Our approach led us to reconsider the molecular diagnosis of six patients of the cohort (6.5%). These HCM probands were carriers of either a new large MYBPC3 rearrangement or splice intronic variations (five cases). Four pathogenic intronic variations, including three novel ones, were detected. Among them, the prevalence of one of them (NM_000256.3:c.1927+ 600 C>T) was estimated at about 0.35% by the screening of 1,040 unrelated HCM individuals. This study suggests that deep MYBPC3 splice mutations account for a significant proportion of HCM cases (6.5% of this cohort). Consequently, NGS sequencing of MYBPC3 intronic sequences have to be performed systematically.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Sequenciamento de Nucleotídeos em Larga Escala , Idoso , Alelos , Processamento Alternativo , Éxons , Feminino , Expressão Gênica , Genes Reporter , Estudos de Associação Genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Mutação , Linhagem , Sítios de Splice de RNA
5.
Am J Med Genet C Semin Med Genet ; 184(1): 129-135, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31965688

RESUMO

PRDM16 (positive regulatory domain 16) is localized in the critical region for cardiomyopathy in patients with deletions of chromosome 1p36, as defined by Gajecka et al., American Journal of Medical Genetics, 2010, 152A, 3074-3083, and encodes a zinc finger transcription factor. We present the first fetal case of left ventricular non-compaction (LVNC) with a PRDM16 variant. The third-trimester obstetric ultrasound revealed a hydropic fetus with hydramnios and expanded hypokinetic heart. After termination of pregnancy, foetopathology showed a eutrophic fetus with isolated cardiomegaly. Endocardial fibroelastosis was associated with non-compaction of the myocardium of the left ventricle. Exome sequencing (ES) identified a de novo unreported p.(Gln353*) heterozygous nonsense variant in PRDM16. ES also identified two rare variants of unknown significance, according to the American College of Medical Genetics and Genomics guidelines, in the titin gene (TTN): a de novo missense p.(Lys14773Asn) variant and a c.33043+5A>G variant inherited from the mother. Along with the PRDM16 de novo probably pathogenic variant, TTN VOUS variants could possibly contribute to the severity and early onset of the cardiac phenotype. Because of the genetic heterogeneity of cardiomyopathies, large panels or even ES could be considered as the main approaches for the molecular diagnosis, particularly in fetal presentations, where multiple hits seem to be common.


Assuntos
Cardiomiopatias/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Fatores de Transcrição/genética , Adulto , Cardiomiopatias/diagnóstico , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/patologia , Feminino , Genes Modificadores/genética , Heterogeneidade Genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/patologia , Humanos , Recém-Nascido , Apresentação no Trabalho de Parto , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Gravidez , Sequenciamento do Exoma
6.
Clin Genet ; 98(6): 589-594, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33111339

RESUMO

The aim of this study was to provide an efficient tool: reliable, able to increase the molecular diagnosis performance, to facilitate the detection of copy number variants (CNV), to assess genetic risk scores (wGRS) and to offer the opportunity to explore candidate genes. Custom SeqCap EZ libraries, NextSeq500 sequencing and a homemade pipeline enable the analysis of 311 dyslipidemia-related genes. In the training group (48 DNA from patients with a well-established molecular diagnosis), this next-generation sequencing (NGS) workflow showed an analytical sensitivity >99% (n = 532 variants) without any false negative including a partial deletion of one exon. In the prospective group, from 25 DNA from patients without prior molecular analyses, 18 rare variants were identified in the first intention panel genes, allowing the diagnosis of monogenic dyslipidemia in 11 patients. In six other patients, the analysis of minor genes and wGRS determination provided a hypothesis to explain the dyslipidemia. Remaining data from the whole NGS workflow identified four patients with potentially deleterious variants. This NGS process gives a major opportunity to accede to an enhanced understanding of the genetic of dyslipidemia by simultaneous assessment of multiple genetic determinants.


Assuntos
Variações do Número de Cópias de DNA/genética , Dislipidemias/genética , Doenças Genéticas Inatas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Dislipidemias/diagnóstico , Dislipidemias/patologia , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Testes Genéticos , Humanos , Masculino , Análise de Sequência de DNA/métodos
7.
Europace ; 20(10): 1692-1698, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579189

RESUMO

Aims: Cardiac atrial arrhythmias are the most common type of heart rhythm disorders. Its genetic elucidation remains challenging with poor understanding of cellular and molecular processes. These arrhythmias usually affect elderly population but in rare cases, young children may also suffer from such electrical diseases. Severe complications, including stroke, are commonly age related. This study aims to identify a genetic link between electro-mechanic atrial dysfunction and stroke in children. Methods and results: In two unrelated boys of 11 and 14 years with both stroke and atrial arrhythmias, the clinical phenotype was determined through a complete physical examination, electrocardiogram (ECG), Holter ECG, and computed tomography. The genetic testing was performed on a large 95 genes panel implicated in myocardial electrical imbalance, using the next generation sequencing method. The panel also includes the genes usually associated with the development of cardiomyopathies. In one child, a left atrial dilation was observed. The 2nd boy suffered from atrial standstill. Both suffered from atrial bradycardia, flutter, and fibrillation. The complete genetic testing revealed the SCN5A c.3823G>A (p.D1275N) mutation in the first family, c.1141-2A>G and c.3157G>A (p.E1053K) mutations in the second family. Conclusion: Our results strengthen the association between Nav1.5 mutations and the occurrence of stroke in young patients. It emphasizes the need to look for atrial myopathy in the decision process for anticoagulation in young patients with atrial arrhythmic events.


Assuntos
Fibrilação Atrial/complicações , Flutter Atrial/complicações , Função do Átrio Esquerdo , Bradicardia/complicações , Cardiomiopatias/complicações , Doenças Genéticas Inatas/complicações , Átrios do Coração/anormalidades , Bloqueio Cardíaco/complicações , Acidente Vascular Cerebral/etiologia , Adolescente , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Flutter Atrial/genética , Flutter Atrial/fisiopatologia , Bradicardia/genética , Bradicardia/fisiopatologia , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Criança , Eletrocardiografia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/fisiopatologia , Átrios do Coração/fisiopatologia , Bloqueio Cardíaco/genética , Bloqueio Cardíaco/fisiopatologia , Humanos , Masculino , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo
8.
BMC Med Genet ; 18(1): 31, 2017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28315637

RESUMO

BACKGROUND: Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterized by prolongation of the QT interval, a risk of syncope, and sudden death. There are already a number of causal genes in LQTS, but not all LQTS patients have an identified mutation, which suggests LQTS unknown genes. METHODS: A cohort of 178 LQTS patients, with no mutations in the 3 major LQTS genes (KCNQ1, KCNH2, and SCN5A), was screened for mutations in the transient potential melastatin 4 gene (TRPM4). RESULTS: Four TRPM4 variants (2.2% of the cohort) were found to change highly conserved amino-acids and were either very rare or absent from control populations. Therefore, these four TRPM4 variants were predicted to be disease causing. Furthermore, no mutations were found in the DNA of these TRPM4 variant carriers in any of the 13 major long QT syndrome genes. Two of these variants were further studied by electrophysiology (p.Val441Met and p.Arg499Pro). Both variants showed a classical TRPM4 outward rectifying current, but the current was reduced by 61 and 90% respectively, compared to wild type TRPM4 current. CONCLUSIONS: This study supports the view that TRPM4 could account for a small percentage of LQTS patients. TRPM4 contribution to the QT interval might be multifactorial by modulating whole cell current but also, as shown in Trpm4-/- mice, by modulating cardiomyocyte proliferation. TRPM4 enlarges the subgroup of LQT genes (KCNJ2 in Andersen syndrome and CACNA1C in Timothy syndrome) known to increase the QT interval through a more complex pleiotropic effect than merely action potential alteration.


Assuntos
Substituição de Aminoácidos , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Canais de Cátion TRPM/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Gene ; 897: 148076, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086455

RESUMO

BACKGROUND: Among KCNH2 missense loss of function (LOF) variants, homozygosity -at any position in the Kv11.1/hERG channel - is very rare and generally leads to intrauterine death, while heterozygous variants in the pore are responsible for severe Type 2 long-QT syndrome (LQTS). We report a novel homozygous p.Gly603Ser missense variant in the pore of Kv11.1/hERG (KCNH2 c.1807G > A) discovered in the context of a severe LQTS. METHODS: We carried out a phenotypic family study combined with a functional analysis of mutated and wild-type (WT) Kv11.1 by two-electrode voltage-clamp using the Xenopus laevis oocyte heterologous expression system. RESULTS: The variant resulted in a severe LQTS phenotype (very prolonged corrected QT interval, T-wave alternans, multiple Torsades de pointes) with a delayed clinical expression in later childhood in the homozygous state, and in a Type 2 LQTS phenotype in the heterozygous state. Expression of KCNH2 p.Gly603Ser cRNA alone elicited detectable current in Xenopus oocytes. Inactivation kinetics and voltage dependence of activation were not significantly affected by the variant. The macroscopic slope conductance of the variant was three-fold less compared to the WT (18.5 ± 9.01 vs 54.7 ± 17.2 µS, p < 0.001). CONCLUSIONS: We characterized the novel p.Gly603Ser KCNH2 missense LOF variant in the pore region of Kv11.1/hERG leading to a severe but viable LQTS in the homozygous state and an attenuated Type 2 LQTS in heterozygous carriers. To our knowledge we provide the first description of a homozygous variant in the pore-forming region of Kv11.1 with a functional impact but a delayed clinical expression.


Assuntos
Canal de Potássio ERG1 , Síndrome do QT Longo , Criança , Humanos , Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto , Fenótipo , Linhagem
10.
Genes (Basel) ; 15(2)2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38397214

RESUMO

Skeletal dysplasia, also called osteochondrodysplasia, is a category of disorders affecting bone development and children's growth. Up to 552 genes, including fibroblast growth factor receptor 3 (FGFR3), have been implicated by pathogenic variations in its genesis. Frequently identified causal mutations in osteochondrodysplasia arise in the coding sequences of the FGFR3 gene: c.1138G>A and c.1138G>C in achondroplasia and c.1620C>A and c.1620C>G in hypochondroplasia. However, in some cases, the diagnostic investigations undertaken thus far have failed to identify the causal anomaly, which strengthens the relevance of the diagnostic strategies being further refined. We observed a Caucasian adult with clinical and radiographic features of achondroplasia, with no common pathogenic variant. Exome sequencing detected an FGFR3(NM_000142.4):c.1075+95C>G heterozygous intronic variation. In vitro studies showed that this variant results in the aberrant exonization of a 90-nucleotide 5' segment of intron 8, resulting in the substitution of the alanine (Ala359) for a glycine (Gly) and the in-frame insertion of 30 amino acids. This change may alter FGFR3's function. Our report provides the first clinical description of an adult carrying this variant, which completes the phenotype description previously provided in children and confirms the recurrence, the autosomal-dominant pathogenicity, and the diagnostic relevance of this FGFR3 intronic variant. We support its inclusion in routinely used diagnostic tests for osteochondrodysplasia. This may increase the detection rate of causal variants and therefore could have a positive impact on patient management. Finally, FGFR3 alteration via non-coding sequence exonization should be considered a recurrent disease mechanism to be taken into account for new drug design and clinical trial strategies.


Assuntos
Acondroplasia , Osteocondrodisplasias , Criança , Adulto , Humanos , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Acondroplasia/diagnóstico , Acondroplasia/genética , Acondroplasia/patologia , Mutação , Éxons , Fenótipo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
11.
Circ Genom Precis Med ; 17(1): e004285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059363

RESUMO

BACKGROUND: Few clinical data are available on NEXN mutation carriers, and the gene's involvement in cardiomyopathies or sudden death has not been fully established. Our objectives were to assess the prevalence of putative pathogenic variants in NEXN and to describe the phenotype and prognosis of patients carrying the variants. METHODS: DNA samples from consecutive patients with cardiomyopathy or sudden cardiac death/sudden infant death syndrome/idiopathic ventricular fibrillation were sequenced with a custom panel of genes. Index cases carrying at least one putative pathogenic variant in the NEXN gene were selected. RESULTS: Of the 9516 index patients sequenced, 31 were carriers of a putative pathogenic variant in NEXN only, including 2 with double variants and 29 with a single variant. Of the 29 unrelated probands with a single variant (16 males; median age at diagnosis, 32.0 [26.0-49.0] years), 21 presented with dilated cardiomyopathy (prevalence, 0.33%), and 3 presented with hypertrophic cardiomyopathy (prevalence, 0.14%). Three patients had idiopathic ventricular fibrillation, and there were 2 cases of sudden infant death syndrome (prevalence, 0.46%). For patients with dilated cardiomyopathy, the median left ventricle ejection fraction was 37.5% (26.25-50.0) at diagnosis and improved with treatment in 13 (61.9%). Over a median follow-up period of 6.0 years, we recorded 3 severe arrhythmic events and 2 severe hemodynamic events. CONCLUSIONS: Putative pathogenic NEXN variants were mainly associated with dilated cardiomyopathy; in these individuals, the prognosis appeared to be relatively good. However, severe and early onset phenotypes were also observed-especially in patients with double NEXN variants. We also detected NEXN variants in patients with hypertrophic cardiomyopathy and sudden infant death syndrome/idiopathic ventricular fibrillation, although a causal link could not be established.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Morte Súbita do Lactente , Fibrilação Ventricular , Masculino , Lactente , Humanos , Adulto , Pessoa de Meia-Idade , Cardiomiopatia Dilatada/genética , Prevalência , Cardiomiopatias/diagnóstico , Fenótipo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/complicações , Morte Súbita Cardíaca/etiologia , Prognóstico , Proteínas dos Microfilamentos/genética
12.
BMC Med Genet ; 13: 105, 2012 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-23140321

RESUMO

BACKGROUND: Hypertrophic Cardiomyopathy (HCM) is a genetically heterogeneous disease. One specific mutation in the MYBPC3 gene is highly prevalent in center east of France giving an opportunity to define the clinical profile of this specific mutation. METHODS: HCM probands were screened for mutation in the MYH7, MYBPC3, TNNT2 and TNNI3 genes. Carriers of the MYBPC3 IVS20-2A>G mutation were genotyped with 8 microsatellites flanking this gene. The age of this MYBPC3 mutation was inferred with the software ESTIAGE. The age at first symptom, diagnosis, first complication, first severe complication and the rate of sudden death were compared between carriers of the IVS20-2 mutation (group A) and carriers of all other mutations (group B) using time to event curves and log rank test. RESULTS: Out of 107 HCM probands, 45 had a single heterozygous mutation in one of the 4 tested sarcomeric genes including 9 patients with the MYBPC3 IVS20-2A>G mutation. The IVS20-2 mutation in these 9 patients and their 25 mutation carrier relatives was embedded in a common haplotype defined after genotyping 4 polymorphic markers on each side of the MYBPC3 gene. This result supports the hypothesis of a common ancestor. Furthermore, we evaluated that the mutation occurred about 47 generations ago, approximately at the 10th century.We then compared the clinical profile of the IVS20-2 mutation carriers (group A) and the carriers of all other mutations (group B). Age at onset of symptoms was similar in the 34 group A cases and the 73 group B cases but group A cases were diagnosed on average 15 years later (log rank test p = 0.022). Age of first complication and first severe complication was delayed in group A vs group B cases but the prevalence of sudden death and age at death was similar in both groups. CONCLUSION: A founder mutation arising at about the 10th century in the MYBPC3 gene accounts for 8.4% of all HCM in center east France and results in a cardiomyopathy starting late and evolving slowly but with an apparent risk of sudden death similar to other sarcomeric mutations.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Adulto , Idade de Início , Evolução Biológica , Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/metabolismo , Morte Súbita , Feminino , Efeito Fundador , Genótipo , Haplótipos , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fatores de Risco , Sarcômeros/genética
13.
Mol Diagn Ther ; 26(5): 551-560, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35838873

RESUMO

BACKGROUND AND OBJECTIVE: Pediatric cardiomyopathies are clinically heterogeneous heart muscle disorders associated with significant morbidity and mortality for which substantial evidence for a genetic contribution was previously reported. We present a detailed molecular investigation of a cohort of 231 patients presenting with primary cardiomyopathy below the age of 18 years. METHODS: Cases with pediatric cardiomyopathies were analyzed using a next-generation sequencing (NGS) workflow based on a virtual panel including 57 cardiomyopathy-related genes. RESULTS: This molecular approach led to the identification of 69 cases (29.9% of the cohort) genotyped as a carrier of at least one pathogenic or likely pathogenic variant. Fourteen patients were carriers of two mutated alleles (homozygous or compound heterozygous) on the same cardiomyopathy-related gene, explaining the severe clinical disease with early-onset cardiomyopathy. Homozygous TNNI3 pathogenic variants were detected for five unrelated neonates (2.2% of the cohort), with four of them carrying the same truncating variant, i.e. p.Arg69Alafs*8. CONCLUSIONS: Our study confirmed the importance of genetic testing in pediatric cardiomyopathies. Discovery of novel pathogenic variations is crucial for clinical management of affected families, as a positive genetic result might be used by a prospective parent for prenatal genetic testing or in the process of pre-implantation genetic diagnosis.


Assuntos
Cardiomiopatias , Sequenciamento de Nucleotídeos em Larga Escala , Adolescente , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Criança , Testes Genéticos , Humanos , Recém-Nascido , Mutação , Estudos Prospectivos
14.
Mol Diagn Ther ; 25(3): 373-385, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33954932

RESUMO

BACKGROUND AND OBJECTIVE: Molecular diagnosis in inherited cardiac diseases is challenging because of the significant genetic and clinical heterogeneity. We present a detailed molecular investigation of a cohort of 4185 patients with referrals for inherited cardiac diseases. METHODS: Patients suffering from cardiomyopathies (3235 probands), arrhythmia syndromes (760 probands), or unexplained sudden cardiac arrest (190 cases) were analyzed using a next-generation sequencing (NGS) workflow based on a panel of 105 genes involved in sudden cardiac death. RESULTS: (Likely) pathogenic variations were identified for approximately 30% of the cohort. Pathogenic copy number variations (CNVs) were detected in approximately 3.1% of patients for whom a (likely) pathogenic variation were identified. A (likely) pathogenic variation was also detected for 21.1% of patients who died from sudden cardiac death. Unexpected variants, including incidental findings, were present for 28 cases. Pathogenic variations were mainly observed in genes with definitive evidence of disease causation. CONCLUSIONS: Our study, which comprises over than 4000 probands, is one of most important cohorts reported in inherited cardiac diseases. The global mutation detection rate would be significantly increased by determining the putative pathogenicity of the large number of variants of uncertain significance. Identification of "unexpected" variants also showed the clinical utility of genetic testing in inherited cardiac diseases as they can redirect clinical management and medical resources toward a meaningful precision medicine. In cases with negative result, a WGS approach could be considered, but would probably have a limited impact on mutation detection rate as (likely) pathogenic variations were essentially clustered in genes with strong evidence of disease causation.


Assuntos
Arritmias Cardíacas/diagnóstico , Cardiomiopatias/diagnóstico , Análise de Sequência de DNA/métodos , Arritmias Cardíacas/genética , Cardiomiopatias/genética , Variações do Número de Cópias de DNA , Morte Súbita Cardíaca , Predisposição Genética para Doença , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Patologia Molecular
15.
DNA Cell Biol ; 40(3): 491-498, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33493017

RESUMO

Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and one of the most common causes of heart failure. TTN-truncating variants represent the most common cause of DCM. Similarly, among other prevalent DCM-causing genes, truncating variants were also frequently detected in BAG3, DSP, FLNC, and LMNA. For these four genes, the current study aims to determine the prevalence of deep intronic pathogenic variants that could lead to splice defects. A next-generation sequencing (NGS) workflow based on whole gene sequencing of BAG3, DSP, FLNC, and LMNA of a cohort of 95 DCM patients, for whom no putatively causative point mutations were identified after NGS of a panel of 48 cardiomyopathy-causing genes, was thus performed. Our approach did not lead us to reconsider the molecular diagnosis of any patient of the cohort. This study suggests that deep splice mutations do not account for a significant proportion of DCM cases. In contrast with MYBPC3 in hypertrophic cardiomyopathy cases, NGS of BAG3, DSP, FLNC, and LMNA whole intronic sequences would not significantly improve the efficiency of molecular diagnosis of DCM probands.


Assuntos
Cardiomiopatia Dilatada/genética , Predisposição Genética para Doença , Proteínas Musculares/genética , Mutação Puntual , Adulto , Cardiomiopatia Dilatada/diagnóstico , Feminino , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Patologia Molecular
16.
Front Genet ; 12: 773177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899860

RESUMO

Andersen-Tawil Syndrome (ATS) is a rare disease defined by the association of cardiac arrhythmias, periodic paralysis and dysmorphic features, and is caused by KCNJ2 loss-of-function mutations. However, when extracardiac symptoms are atypical or absent, the patient can be diagnosed with Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT), a rare arrhythmia at high risk of sudden death, mostly due to RYR2 mutations. The identification of KCNJ2 variants in CPVT suspicion is very rare but important because beta blockers, the cornerstone of CPVT therapy, could be less efficient. We report here the cases of two patients addressed for CPVT-like phenotypes. Genetic investigations led to the identification of p. Arg82Trp and p. Pro186Gln de novo variants in the KCNJ2 gene. Functional studies showed that both variants forms of Kir2.1 monomers act as dominant negative and drastically reduced the activity of the tetrameric channel. We characterize here a new pathogenic variant (p.Pro186Gln) of KCNJ2 gene and highlight the interest of accurate cardiologic evaluation and of attention to extracardiac signs to distinguish CPVT from atypical ATS, and guide therapeutic decisions. We also confirm that the KCNJ2 gene must be investigated during CPVT molecular analysis.

17.
Clin Transl Med ; 11(3): e319, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784018

RESUMO

BACKGROUND: Severe ventricular rhythm disturbances are the hallmark of arrhythmogenic cardiomyopathy (ACM), and are often explained by structural conduction abnormalities. However, comprehensive investigations of ACM cell electrical instability are lacking. This study aimed to elucidate early electrical myogenic signature of ACM. METHODS: We investigated a 41-year-old ACM patient with a missense mutation (c.394C>T) in the DSC2 gene, which encodes desmocollin 2. Pathogenicity of this variant was confirmed using a zebrafish DSC2 model system. Control and DSC2 patient-derived pluripotent stem cells were reprogrammed and differentiated into cardiomyocytes (hiPSC-CM) to examine the specific electromechanical phenotype and its modulation by antiarrhythmic drugs (AADs). Samples of the patient's heart and hiPSC-CM were examined to identify molecular and cellular alterations. RESULTS: A shortened action potential duration was associated with reduced Ca2+ current density and increased K+ current density. This finding led to the elucidation of previously unknown abnormal repolarization dynamics in ACM patients. Moreover, the Ca2+ mobilised during transients was decreased, and the Ca2+ sparks frequency was increased. AAD testing revealed the following: (1) flecainide normalised Ca2+ transients and significantly decreased Ca2+ spark occurrence and (2) sotalol significantly lengthened the action potential and normalised the cells' contractile properties. CONCLUSIONS: Thorough analysis of hiPSC-CM derived from the DSC2 patient revealed abnormal repolarization dynamics, prompting the discovery of a short QT interval in some ACM patients. Overall, these results confirm a myogenic origin of ACM electrical instability and provide a rationale for prescribing class 1 and 3 AADs in ACM patients with increased ventricular repolarization reserve.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Desmocolinas/genética , Eletrocardiografia/métodos , Canais Iônicos/genética , Adulto , Animais , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Peixe-Zebra
18.
Neurogenetics ; 11(1): 13-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19475438

RESUMO

We report the molecular characterization of two splice mutations in two different French families affected with a late onset form of Charcot-Marie-Tooth disease type 1B (CMT1B), an autosomal dominant inherited disorder caused by mutations in the myelin protein zero gene. The first substitution, c.306G>A, located in exon 3, does not change the codon p.Val102Val but is co-transmitted with the disease in the first family. The second substitution, c.675+3dup, is an insertion of a T at position +3 of intron 5. To identify the functional impact of these nucleotide changes on splicing and because no RNA sample was available, we used in silico prediction and in vitro splicing assay. Mutation c.306G>A increases the strength of a preexisting cryptic donor site at position c.304 which becomes stronger than the normal donor site of intron 3. This variation creates a sequence that better matches the U1 small nuclear RNA (snRNA) binding consensus, and HeLa cells, transfected with the mutant minigene, produce a truncated exon 3 messenger RNA (mRNA). Mutation c.675+3dup was predicted to abolish the donor site of intron 5, and, indeed, HeLa cells transfected with the mutant minigene completely skip exon 5 from the transcript. The mutated sequence abolishes U1 snRNA binding and co-transfection of a mutated complementary U1 snRNA restored exon 5 inclusion in the mRNA. This work provides valuable information regarding the molecular basis of two forms of late onset of CMT1B, U1 snRNA mis-binding, and provides more evidence that a "silent" polymorphism may be a disease causing mutation.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , RNA Nuclear Pequeno/metabolismo , Adulto , Éxons , Feminino , Células HeLa , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Polimorfismo Genético , Splicing de RNA
19.
Cell Rep ; 32(10): 108117, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905764

RESUMO

Recent advances in induced pluripotent stem cell (iPSC) technology and directed differentiation of iPSCs into cardiomyocytes (iPSC-CMs) make it possible to model genetic heart disease in vitro. We apply CRISPR/Cas9 genome editing technology to introduce three RBM20 mutations in iPSCs and differentiate them into iPSC-CMs to establish an in vitro model of RBM20 mutant dilated cardiomyopathy (DCM). In iPSC-CMs harboring a known causal RBM20 variant, the splicing of RBM20 target genes, calcium handling, and contractility are impaired consistent with the disease manifestation in patients. A variant (Pro633Leu) identified by exome sequencing of patient genomes displays the same disease phenotypes, thus establishing this variant as disease causing. We find that all-trans retinoic acid upregulates RBM20 expression and reverts the splicing, calcium handling, and contractility defects in iPSC-CMs with different causal RBM20 mutations. These results suggest that pharmacological upregulation of RBM20 expression is a promising therapeutic strategy for DCM patients with a heterozygous mutation in RBM20.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Humanos , Regulação para Cima
20.
Open Med (Wars) ; 15(1): 435-446, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33336002

RESUMO

Post-mortem genetic analyses may help to elucidate the cause of cardiac death. The added value is however unclear when a cardiac disease is already suspected or affirmed. Our aim was to study the feasibility and medical impact of post-mortem genetic analyses in suspected cardiomyopathy. We studied 35 patients with cardiac death and suspected cardiomyopathy based on autopsy or clinical data. After targeted sequencing, we identified 15 causal variants in 15 patients (yield 43%) in sarcomeric (n = 8), desmosomal (n = 3), lamin A/C (n = 3) and transthyretin (n = 1) genes. The results had various impacts on families, i.e. allowed predictive genetic testing in relatives (15 families), planned early therapeutics based on the specific underlying gene (5 families), rectified the suspected cardiomyopathy subtype (2 families), assessed the genetic origin of cardiomyopathy that usually has an acquired cause (1 family), assessed the diagnosis in a patient with uncertain borderline cardiomyopathy (1 family), reassured the siblings because of a de novo mutation (2 families) and allowed prenatal testing (1 family). Our findings suggest that post-mortem molecular testing should be included in the strategy of family care after cardiac death and suspected cardiomyopathy, since genetic findings provide additional information useful for relatives, which are beyond conventional autopsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA