Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Virol ; 98(4): e0184423, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436247

RESUMO

Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE: Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.


Assuntos
Proteínas de Resistência a Myxovirus , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas não Estruturais Virais , Replicação Viral , Animais , Linhagem Celular , Interferons/imunologia , Interferons/metabolismo , Mutação , Proteínas de Resistência a Myxovirus/química , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Síndrome Respiratória e Reprodutiva Suína/enzimologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ligação Proteica , Suínos/virologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
2.
J Virol ; 96(17): e0061222, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36005757

RESUMO

Protein SUMOylation represents an important cellular process that regulates the activities of numerous host proteins as well as of many invasive viral proteins. Foot-and-mouth disease virus (FMDV) is the first animal virus discovered. However, whether SUMOylation takes place during FMDV infection and what role it plays in FMDV pathogenesis have not been investigated. In the present study, we demonstrated that SUMOylation suppressed FMDV replication by small interfering RNA (siRNA) transfection coupled with pharmaceutical inhibition of SUMOylation, which was further confirmed by increased virus replication for SUMOylation-deficient FMDV with mutations in 3C protease, a target of SUMOylation. Moreover, we provided evidence that four lysine residues, Lys-51, -54, -110, and -159, worked together to confer the SUMOylation to the FMDV 3C protease, which may make SUMOylation of FMDV 3C more stable and improve the host's chance of suppressing the replication of FMDV. This is the first report that four lysine residues can be alternatively modified by SUMOylation. Finally, we showed that SUMOylation attenuated the cleavage ability, the inhibitory effect of the interferon signaling pathway, and the protein stability of FMDV 3C, which appeared to correlate with a decrease in FMDV replication. Taken together, the results of our experiments describe a novel cellular regulatory event that significantly restricts FMDV replication through the SUMOylation of 3C protease. IMPORTANCE FMD is a highly contagious and economically important disease in cloven-hoofed animals. SUMOylation, the covalent linkage of a small ubiquitin-like protein to a variety of substrate proteins, has emerged as an important posttranslational modification that plays multiple roles in diverse biological processes. In this study, four lysine residues of FMDV 3C were found to be alternatively modified by SUMOylation. In addition, we demonstrated that SUMOylation attenuated FMDV 3C function through multiple mechanisms, including cleavage ability, the inhibitory effect of the interferon signaling pathway, and protein stability, which, in turn, resulted in a decrease of FMDV replication. Our findings indicate that SUMOylation of FMDV 3C serves as a host cell defense against FMDV replication. Further understanding of the cellular and molecular mechanisms driving this process should offer novel insights to design an effective strategy to control the dissemination of FMDV in animals.


Assuntos
Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa , Proteases Virais 3C , Animais , Antivirais , Febre Aftosa , Vírus da Febre Aftosa/genética , Interações Hospedeiro-Patógeno , Lisina/metabolismo , Peptídeo Hidrolases/metabolismo , Sumoilação , Replicação Viral
3.
J Virol ; 95(15): e0036121, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980594

RESUMO

Foot-and-mouth disease virus (FMDV) is the pathogen of foot-and-mouth disease (FMD), which is a highly contagious disease in cloven-hoofed animals. To survive in the host, FMDV has evolved multiple strategies to antagonize host innate immune responses. In this study, we showed that the leader protease (Lpro) of FMDV, a papain-like proteinase, promoted viral replication by evading the antiviral interferon response through counteracting the 2',5'-oligoadenylate synthetase (OAS)/RNase L system. Specifically, we observed that the titers of Lpro deletion virus were significantly lower than those of wild-type FMDV (FMDV-WT) in cultured cells. Our mechanistic studies demonstrated that Lpro interfered with the OAS/RNase L pathway by interacting with the N-terminal domain of swine RNase L (sRNase L). Remarkably, Lpro of FMDV exhibited species-specific binding to RNase L in that the interaction was observed only in swine cells, not human, monkey, or canine cells. Lastly, we presented evidence that by interacting with sRNase L, FMDV Lpro inhibited cellular apoptosis. Taken together, these results demonstrate a novel mechanism that Lpro utilizes to escape the OAS/RNase L-mediated antiviral defense pathway. IMPORTANCE FMDV is a picornavirus that causes a significant disease in agricultural animals. FMDV has developed diverse strategies to escape the host interferon response. Here, we show that Lpro of FMDV antagonizes the OAS/RNase L pathway, an important interferon effector pathway, by interacting with the N-terminal domain of sRNase L. Interestingly, such a virus-host interaction is species-specific because the interaction is detected only in swine cells, not in human, monkey, or canine cells. Furthermore, Lpro inhibits apoptosis through interacting with sRNase L. This study demonstrates a novel mechanism by which FMDV has evolved to inhibit host innate immune responses.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Endopeptidases/metabolismo , Endorribonucleases/metabolismo , Vírus da Febre Aftosa/imunologia , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Animais , Apoptose/imunologia , Linhagem Celular , Cricetinae , Cães , Endopeptidases/genética , Endopeptidases/imunologia , Endorribonucleases/genética , Febre Aftosa/imunologia , Febre Aftosa/virologia , Células HEK293 , Haplorrinos , Humanos , Evasão da Resposta Imune/genética , Células Madin Darby de Rim Canino , Domínios Proteicos , Suínos
4.
J Gen Virol ; 98(6): 1316-1328, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28613152

RESUMO

Type I interferons (IFNs) are critical in animal antiviral regulation. IFN-mediated signalling regulates hundreds of genes that are directly associated with antiviral, immune and other physiological responses. The signalling pathway mediated by mechanistic target of rapamycin (mTOR), a serine/threonine kinase regulated by IFNs, is key in regulation of cellular metabolism and was recently implicated in host antiviral responses. However, little is known about how animal type I IFN signalling coordinates immunometabolic reactions during antiviral defence. Here, using porcine reproductive and respiratory syndrome virus (PRRSV), we found that the genes in the mTOR signalling pathway were differently regulated in PRRSV-infected porcine alveolar macrophages at different activation statuses. Moreover, mTOR signalling regulated PRRSV infection in MARC-145 and primary porcine cells, in part, through modulating the production and signalling of type I IFNs. Taken together, we determined that the mTOR signalling pathway involves PRRSV infection and regulates expression and signalling of type I IFNs against viral infection. These findings suggest that the mTOR signalling pathway has a bi-directional loop with the type I IFN system and imply that some components in the mTOR signalling pathway can be utilized as targets for studying antiviral immunity and for designing therapeutic reagents.


Assuntos
Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/virologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Transdução de Sinais , Suínos
5.
Mol Microbiol ; 95(1): 127-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367076

RESUMO

Quorum sensing is a process of bacterial cell-cell communication that relies on the production, release and receptor-driven detection of extracellular signal molecules called autoinducers. The quorum-sensing bacterium Vibrio harveyi exclusively detects the autoinducer N-((R)-3-hydroxybutanoyl)-L-homoserine lactone (3OH-C4 HSL) via the two-component receptor LuxN. To discover the principles underlying the exquisite selectivity LuxN has for its ligand, we identified LuxN mutants with altered specificity. LuxN uses three mechanisms to verify that the bound molecule is the correct ligand: in the context of the overall ligand-binding site, His210 validates the C3 modification, Leu166 surveys the chain-length and a strong steady-state kinase bias imposes an energetic hurdle for inappropriate ligands to elicit signal transduction. Affinities for the LuxN kinase on and kinase off states underpin whether a ligand will act as an antagonist or an agonist. Mutations that bias LuxN to the agonized, kinase off, state are clustered in a region adjacent to the ligand-binding site, suggesting that this region acts as the switch that triggers signal transduction. Together, our analyses illuminate how a histidine sensor kinase differentiates between ligands and exploits those differences to regulate its signaling activity.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Vibrio/enzimologia , 4-Butirolactona/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Histidina/metabolismo , Leucina/metabolismo , Proteínas Quinases/metabolismo , Percepção de Quorum , Transdução de Sinais , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Vibrio/química , Vibrio/genética , Vibrio/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(44): 17981-6, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24143808

RESUMO

Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/fisiologia , Transativadores/antagonistas & inibidores , Animais , Caenorhabditis elegans , Linhagem Celular , Escherichia coli , Humanos , Lactonas/química , Lactonas/farmacologia , Análise em Microsséries , Estrutura Molecular , Pseudomonas aeruginosa/fisiologia , Piocianina , Percepção de Quorum/efeitos dos fármacos , Mucosa Respiratória/fisiologia , Compostos de Enxofre/química , Compostos de Enxofre/farmacologia , Virulência
7.
J Neurophysiol ; 113(10): 3692-9, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25787957

RESUMO

The intrinsic excitability of spinal motoneurons is mediated in part by the presence of persistent inward currents (PICs), which amplify synaptic input and promote self-sustained firing. Studies using animal models have shown that PICs are greater in extensor motoneurons over flexor motoneurons, but this difference has not yet been demonstrated in humans. The primary objective of this study was to determine whether a similar difference exists in humans by recording from motor units in biceps and triceps brachii during isometric contractions. We compared firing rate profiles of pairs of motor units, in which the firing rate of the lower-threshold "control" unit was used as an indicator of common drive to the higher-threshold "test" unit. The estimated contribution of the PIC was calculated as the difference in firing rate of the control unit at recruitment versus derecruitment of the test unit, a value known as the delta-F (ΔF). We found that ΔF values were significantly higher in triceps brachii (5.4 ± 0.9 imp/s) compared with biceps brachii (3.0 ± 1.4 imp/s; P < 0.001). This difference was still present even after controlling for saturation in firing rate of the control unit, rate modulation of the control unit, and differences in recruitment time between test and control units, which are known to contribute to ΔF variability. We conclude that human elbow flexor and extensor motor units exhibit differences in intrinsic excitability, contributing to different neural motor control strategies between muscle groups.


Assuntos
Cotovelo/inervação , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/citologia , Potenciais de Ação , Idoso , Análise de Variância , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Torque
8.
Mol Microbiol ; 91(4): 821-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24372841

RESUMO

Quorum sensing (QS) is a process of bacterial cell-cell communication that relies on the production, detection and population-wide response to extracellular signal molecules called autoinducers. The QS system commonly found in vibrios and photobacteria consists of the CqsA synthase/CqsS receptor pair. Vibrio cholerae CqsA/S synthesizes and detects (S)-3-hydroxytridecan-4-one (C10-CAI-1), whereas Vibrio harveyi produces and detects a distinct but similar molecule, (Z)-3-aminoundec-2-en-4-one (Ea-C8-CAI-1). To understand the signalling properties of the larger family of CqsA-CqsS pairs, here, we characterize the Photobacterium angustum CqsA/S system. Many photobacterial cqsA genes harbour a conserved frameshift mutation that abolishes CAI-1 production. By contrast, their cqsS genes are intact. Correcting the P. angustum cqsA reading frame restores production of a mixture of CAI-1 moieties, including C8-CAI-1, C10-CAI-1, Ea-C8-CAI-1 and Ea-C10-CAI-1. This signal production profile matches the P. angustum CqsS receptor ligand-detection capability. The receptor exhibits a preference for molecules with 10-carbon tails, and the CqsS Ser(168) residue governs this preference. P. angustum can overcome the cqsA frameshift to produce CAI-1 under particular limiting growth conditions presumably through a ribosome slippage mechanism. Thus, we propose that P. angustum uses CAI-1 signalling for adaptation to stressful environments.


Assuntos
Proteínas de Membrana/metabolismo , Feromônios/metabolismo , Photobacterium/fisiologia , Percepção de Quorum , Especificidade por Substrato
9.
Vaccines (Basel) ; 12(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38932335

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) remains a formidable challenge for the global pig industry. Caused by PRRS virus (PRRSV), this disease primarily affects porcine reproductive and respiratory systems, undermining effective host interferon and other immune responses, resulting in vaccine ineffectiveness. In the absence of specific antiviral treatments for PRRSV, vaccines play a crucial role in managing the disease. The current market features a range of vaccine technologies, including live, inactivated, subunit, DNA, and vector vaccines, but only modified live virus (MLV) and killed virus (KV) vaccines are commercially available for PRRS control. Live vaccines are promoted for their enhanced protective effectiveness, although their ability to provide cross-protection is modest. On the other hand, inactivated vaccines are emphasized for their safety profile but are limited in their protective efficacy. This review updates the current knowledge on PRRS vaccines' interactions with the host interferon system, and other immunological aspects, to assess their current status and evaluate advents in PRRSV vaccine development. It presents the strengths and weaknesses of both live attenuated and inactivated vaccines in the prevention and management of PRRS, aiming to inspire the development of innovative strategies and technologies for the next generation of PRRS vaccines.

10.
Front Microbiol ; 15: 1305097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516008

RESUMO

Bordetella bronchiseptica is a highly contagious respiratory bacterial veterinary pathogen. In this study the contribution of the transcriptional regulators BvgR, RisA, RisS, and the phosphorylation of RisA to global gene regulation, intracellular cyclic-di-GMP levels, motility, and biofilm formation were evaluated. Next Generation Sequencing (RNASeq) was used to differentiate the global gene regulation of both virulence-activated and virulence-repressed genes by each of these factors. The BvgAS system, along with BvgR, RisA, and the phosphorylation of RisA served in cyclic-di-GMP degradation. BvgR and unphosphorylated RisA were found to temporally regulate motility. Additionally, BvgR, RisA, and RisS were found to be required for biofilm formation.

11.
Viruses ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932231

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) replicates in the upper respiratory tract and tonsils of pigs. Using an air-liquid interface porcine respiratory epithelial cells (ALI-PRECs) culture system, we demonstrated that PHEV disrupts respiratory epithelia homeostasis by impairing ciliary function and inducing antiviral, pro-inflammatory cytokine, and chemokine responses. This study explores the mechanisms driving early innate immune responses during PHEV infection through host transcriptome analysis. Total RNA was collected from ALI-PRECs at 24, 36, and 48 h post inoculation (hpi). RNA-seq analysis was performed using an Illumina Hiseq 600 to generate 100 bp paired-end reads. Differential gene expression was analyzed using DeSeq2. PHEV replicated actively in ALI-PRECs, causing cytopathic changes and progressive mucociliary disruption. Transcriptome analysis revealed downregulation of cilia-associated genes such as CILK1, DNAH11, LRRC-23, -49, and -51, and acidic sialomucin CD164L2. PHEV also activated antiviral signaling pathways, significantly increasing the expression of interferon-stimulated genes (RSAD2, MX1, IFIT, and ISG15) and chemokine genes (CCL5 and CXCL10), highlighting inflammatory regulation. This study contributes to elucidating the molecular mechanisms of the innate immune response to PHEV infection of the airway epithelium, emphasizing the critical roles of the mucociliary, interferon, and chemokine responses.


Assuntos
Betacoronavirus 1 , Células Epiteliais , Perfilação da Expressão Gênica , Interferons , Animais , Suínos , Células Epiteliais/virologia , Células Epiteliais/imunologia , Interferons/genética , Interferons/metabolismo , Interferons/imunologia , Betacoronavirus 1/imunologia , Betacoronavirus 1/genética , Imunidade Inata , Replicação Viral , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Citocinas/metabolismo , Citocinas/genética , Citocinas/imunologia , Transcriptoma , Mucosa Respiratória/virologia , Mucosa Respiratória/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/genética , Células Cultivadas , Deltacoronavirus
12.
Microbiol Spectr ; 12(2): e0252423, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189329

RESUMO

The potential infectivity of severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with the SARS-CoV-2 WA1/2020 strain was assessed throughout 48 h post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to virus infection, with significantly (P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via interleukin-17 (IL-17) and nuclear factor-κB (NF-κB) signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans.IMPORTANCEThis study demonstrated that human and white-tailed deer primary respiratory epithelial cells are susceptible to the SARS-CoV-2 WA1/2020 strain infection. However, the comparative transcriptomic analysis revealed that deer cells could limit viral replication without causing hypercytokinemia by downregulating IL-17 and NF-κB signaling pathways. Identifying differentially expressed genes in human and deer cells that modulate key innate immunity pathways during the early infection will lead to developing targeted therapies toward preventing or mitigating the "cytokine storm" often associated with severe cases of coronavirus disease 19 (COVID-19). Moreover, results from this study will aid in identifying novel prognostic biomarkers in predicting SARS-CoV-2 adaption and transmission in deer and associated cervids.


Assuntos
COVID-19 , Cervos , Animais , Humanos , SARS-CoV-2/metabolismo , Interleucina-17 , NF-kappa B/metabolismo , Citocinas/metabolismo , Células Epiteliais , Síndrome da Liberação de Citocina
13.
Virol Sin ; 38(3): 387-397, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36921803

RESUMO

Foot-and-mouth disease virus (FMDV) has developed various strategies to antagonize the host innate immunity. FMDV Lpro and 3Cpro interfere with type I IFNs through different mechanisms. The structural protein VP3 of FMDV degrades Janus kinase 1 to suppress IFN-γ signaling transduction. Whether non-structural proteins of FMDV are involved in restraining type II IFN signaling pathways is unknown. In this study, it was shown that FMDV replication was resistant to IFN-γ treatment after the infection was established and FMDV inhibited type II IFN induced expression of IFN-γ-stimulated genes (ISGs). We also showed for the first time that FMDV non-structural protein 3C antagonized IFN-γ-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. 3Cpro expression significantly reduced the ISGs transcript levels and palindromic gamma-activated sequences (GAS) promoter activity, without affecting the protein level, tyrosine phosphorylation, and homodimerization of STAT1. Finally, we provided evidence that 3C protease activity played an essential role in degrading KPNA1 and thus inhibited ISGs mRNA and GAS promoter activities. Our results reveal a novel mechanism by which an FMDV non-structural protein antagonizes host type II IFN signaling.


Assuntos
Vírus da Febre Aftosa , Interferon Tipo I , Animais , Interferon gama/farmacologia , Vírus da Febre Aftosa/genética , Transdução de Sinais , Imunidade Inata , Interferon Tipo I/metabolismo
14.
BMC Vet Res ; 8: 208, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110781

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide. Emergence in 2006 of a novel highly pathogenic PRRSV (HP-PRRSV) isolate in China necessitated a comparative investigation into the host transcriptome response in tracheobronchial lymph nodes (TBLN) 13 days post-infection with HP-PRRSV rJXwn06, PRRSV strain VR-2332 or sham inocula. RNA from each was prepared for next-generation sequencing. Amplified library constructs were directly sequenced and a list of sequence transcripts and counts was generated using an RNAseq analysis pipeline to determine differential gene expression. Transcripts were annotated and relative abundance was calculated based upon the number of times a given transcript was represented in the library. RESULTS: Major changes in transcript abundance occurred in response to infection with either PRRSV strain, each with over 630 differentially expressed transcripts. The largest increase in transcript level for either virus versus sham-inoculated controls were three serum amyloid A2 acute-phase isoforms. However, the degree of up or down-regulation of transcripts following infection with HP-PRRSV rJXwn06 was greater than transcript changes observed with US PRRSV VR-2332. Also, of 632 significantly altered transcripts within the HP-PRRSV rJXwn06 library 55 were up-regulated and 69 were down-regulated more than 3-fold, whilst in the US PRRSV VR-2332 library only 4 transcripts were up-regulated and 116 were down-regulated more than 3-fold. CONCLUSIONS: The magnitude of differentially expressed gene profiles detected in HP-PRRSV rJXwn06 infected pigs as compared to VR-2332 infected pigs was consistent with the increased pathogenicity of the HP-PRRSV in vivo.


Assuntos
Regulação da Expressão Gênica/imunologia , Linfonodos/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Animais , China/epidemiologia , Linfonodos/virologia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Síndrome Respiratória e Reprodutiva Suína/virologia , RNA/genética , RNA/metabolismo , Suínos , Transcriptoma
15.
Chem Soc Rev ; 40(9): 4550-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21629881

RESUMO

Methods that furnish enantioenriched products are crucial in modern organic synthesis. An underutilized strategy to arrive at enantioenriched products is to perform divergent reactions on racemic mixtures, where each enantiomer of the starting material reacts with a single chiral reagent to furnish two separable, non-enantiomeric products that are enantioenriched. Stereodivergent, regiodivergent and structurally divergent reactions on racemic mixtures are discussed in this tutorial review.

16.
Front Vet Sci ; 9: 791034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400088

RESUMO

One of the largest impediments for commercial swine production is the presence of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a devastating RNA viral infection that is responsible for over $1 billion in loss in the U.S. annually. The challenge with combating PRRSV is a combination of the effect of an extraordinary rate of mutation, the ability to infect macrophages, and subversion of host immune response through a series of actions leading to both immunomodulation and immune evasion. Currently there are a handful of commercial vaccines on the market that have been shown to be effective against homologous infections, but struggle against heterologous or mixed strain infections. However, vaccination is the current best strategy for combating PRRSV, making research into new vaccine technology key. To address these issues with PRRSV and host antiviral functions a novel modified-live vaccine (MLV) able to stimulate known antiviral interferons was created and examined for its ability to potentiate effective immunity and better protection. Here, we examine gene expression in the liver of pigs vaccinated with our novel vaccine, given the liver's large role in antiviral responses and vaccine metabolism. Our study indicated that pigs administered the novel vaccine experience homeostatic gene expression consistent with less inflammation and T-cell depletion risk than pigs administered the commercial vaccine.

17.
Front Immunol ; 13: 1016268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389683

RESUMO

Previous studies have shown that interferon-mediated antiviral activity is subtype-dependent. Using a whole transcriptome procedure, we aimed to characterize the small RNA transcriptome (sRNA-Seq) and specifically the differential microRNA (miRNA) responses in porcine alveolar macrophages (PAMs) upon antiviral activation during viral infection and interferon (IFN) stimulation. Data showed that near 90% of the qualified reads of sRNA were miRNAs, and about 10% of the other sRNAs included rRNA, snoRNA, snRNA, and tRNA in order of enrichment. As the majority of sRNA (>98%) were commonly detected in all PAM samples under different treatments, about 2% sRNA were differentially expressed between the different antiviral treatments. Focusing on miRNA, 386 miRNA were profiled, including 331 known and 55 novel miRNA sequences, of which most were ascribed to miRNA families conserved among vertebrates, particularly mammalian species. Of the miRNA profiles comparably generated across the different treatments, in general, significantly differentially expressed miRNA (SEM) demonstrated that: (1) the wild-type and vaccine strains of a porcine arterivirus (a.k.a., PRRSV) induced nearly reversed patterns of up- or down-regulated SEMs; (2) similar SEM patterns were found among the treatments by the vaccine strain and antiviral IFN-α1/-ω5 subtypes; and (3) the weak antiviral IFN-ω1, however, remarked a suppressive SEM pattern as to SEMs upregulated in the antiviral treatments by the vaccine and IFN-α1/-ω5 subtypes. Further articulation identified SEMs commonly or uniquely expressed in different treatments, and experimentally validated that some SEMs including miR-10b and particularly miR-9-1 acted significantly in regulation of differential antiviral reactions stimulated by different IFN subtypes. Therefore, this study provides a general picture of porcine sRNA composition and pinpoints key SEMs underlying antiviral regulation in PAMs correlated to a typical respiratory RNA virus in pigs.


Assuntos
Interferons , MicroRNAs , Suínos , Animais , Interferons/genética , Macrófagos Alveolares , Transcriptoma , Antivirais , MicroRNAs/genética , Mamíferos/genética
18.
J Clin Microbiol ; 49(4): 1542-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21270231

RESUMO

Several factors have recently converged, elevating the need for highly parallel diagnostic platforms that have the ability to detect many known, novel, and emerging pathogenic agents simultaneously. Panviral DNA microarrays represent the most robust approach for massively parallel viral surveillance and detection. The Virochip is a panviral DNA microarray that is capable of detecting all known viruses, as well as novel viruses related to known viral families, in a single assay and has been used to successfully identify known and novel viral agents in clinical human specimens. However, the usefulness and the sensitivity of the Virochip platform have not been tested on a set of clinical veterinary specimens with the high degree of genetic variance that is frequently observed with swine virus field isolates. In this report, we investigate the utility and sensitivity of the Virochip to positively detect swine viruses in both cell culture-derived samples and clinical swine samples. The Virochip successfully detected porcine reproductive and respiratory syndrome virus (PRRSV) in serum containing 6.10 × 10(2) viral copies per microliter and influenza A virus in lung lavage fluid containing 2.08 × 10(6) viral copies per microliter. The Virochip also successfully detected porcine circovirus type 2 (PCV2) in serum containing 2.50 × 10(8) viral copies per microliter and porcine respiratory coronavirus (PRCV) in turbinate tissue homogenate. Collectively, the data in this report demonstrate that the Virochip can successfully detect pathogenic viruses frequently found in swine in a variety of solid and liquid specimens, such as turbinate tissue homogenate and lung lavage fluid, as well as antemortem samples, such as serum.


Assuntos
Técnicas de Laboratório Clínico/métodos , Análise em Microsséries/métodos , Infecções Respiratórias/veterinária , Doenças dos Suínos/diagnóstico , Virologia/métodos , Viroses/veterinária , Animais , Circovirus/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Coronavirus Respiratório Porcino/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/virologia , Viroses/diagnóstico , Viroses/virologia
19.
Org Biomol Chem ; 9(7): 2433-51, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21327225

RESUMO

The cis-hydrindane motif is found in a number of natural products that display important biological activity. A flexible, stereoselective approach to the framework has been developed that features highly diastereoselective, SmI(2)-mediated cyclisations. The strategy has been exploited in the first synthesis of the proposed structure of faurinone and an approach to the skeleton of the antibacterial natural product, pleuromutilin.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Indanos/química , Samário/química , Produtos Biológicos/química , Ciclização , Diterpenos/síntese química , Modelos Moleculares , Estrutura Molecular , Oxirredução , Compostos Policíclicos , Estereoisomerismo , Pleuromutilinas
20.
Dev Dyn ; 239(12): 3297-302, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21061240

RESUMO

The anatomical association between sensory nerves and blood vessels is well recognised in the adult, and interactions between the two are important during development. Here we have examined the relationship between developing blood vessels and sensory neuronal cell bodies, which is less well understood. We show in the chick that the nascent dorsal root ganglia (DRG) lie dorsal to the longitudinal anastomosis, adjacent to the developing neural tube at the level of the sulcus limitans. Furthermore, the blood vessel is present prior to the neurons suggesting that it may play a role in positioning the DRG. We use the zebrafish cloche mutation to analyse DRG formation in the absence of blood vessels and show that the DRG are positioned normally. Thus, despite their close anatomical relationship, the patterning of the blood vessel and DRG alongside the neural tube is separable rather than interdependent.


Assuntos
Vasos Sanguíneos/embriologia , Gânglios Espinais/embriologia , Crista Neural/embriologia , Células Receptoras Sensoriais/citologia , Animais , Embrião de Galinha , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA