RESUMO
NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.
Assuntos
Histona-Lisina N-Metiltransferase , Neoplasias , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismoRESUMO
Proteolysis-targeting chimaeras (PROTACs) are molecules that combine a target-binding warhead with an E3 ligase-recruiting moiety; by drawing the target protein into a ternary complex with the E3 ligase, PROTACs induce target protein degradation. While PROTACs hold exciting potential as chemical probes and as therapeutic agents, development of a PROTAC typically requires synthesis of numerous analogs to thoroughly explore variations on the chemical linker; without extensive trial and error, it is unclear how to link the two protein-recruiting moieties to promote formation of a productive ternary complex. Here, we describe a structure-based computational method for evaluating the suitability of a given linker for ternary complex formation. Our method uses Rosetta to dock the protein components and then builds the PROTAC from its component fragments into each binding mode; complete models of the ternary complex are then refined. We apply this approach to retrospectively evaluate multiple PROTACs from the literature, spanning diverse target proteins. We find that modeling ternary complex formation is sufficient to explain both activity and selectivity reported for these PROTACs, implying that other cellular factors are not key determinants of activity in these cases. We further find that interpreting PROTAC activity is best approached using an ensemble of structures of the ternary complex rather than a single static conformation and that members of a structurally conserved protein family can be recruited by the same PROTAC through vastly different binding modes. To encourage adoption of these methods and promote further analyses, we disseminate both the computational methods and the models of ternary complexes.
Assuntos
Proteólise , Ubiquitina-Proteína Ligases , Estudos Retrospectivos , Ubiquitina-Proteína Ligases/metabolismoRESUMO
S-Adenosyl-l-methionine (SAM) is the central cofactor in the radical SAM enzyme superfamily, responsible for a vast number of transformations in primary and secondary metabolism. In nearly all of these reactions, the reductive cleavage of SAM is proposed to produce a reactive species, 5'-deoxyadenosyl radical, which initiates catalysis. While the mechanistic details in many cases are well-understood, the reductive cleavage of SAM remains elusive. In this manuscript, we have measured the solution peak potential of SAM to be â¼-1.4 V (v SHE) and show that under controlled potential conditions, it undergoes irreversible fragmentation to the 5'-deoxyadenosyl radical. While the radical intermediate is not directly observed, its presence as an initial intermediate is inferred by the formation of 8,5'-cycloadenosine and by H atom incorporation into 5'-deoxyadenosine from solvent exchangeable site. Similarly, 2-aminobutyrate is also observed under electrolysis conditions. The implications of these results in the context of the reductive cleavage of SAM by radical SAM enzymes are discussed.
Assuntos
Técnicas Eletroquímicas , Hidroliases/metabolismo , S-Adenosilmetionina/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Hidroliases/química , Estrutura Molecular , S-Adenosilmetionina/síntese química , S-Adenosilmetionina/químicaRESUMO
RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.
RESUMO
RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.
RESUMO
TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53. Consistent with this, we find that Y107H can suppress tumor colony formation and is impaired for the transactivation of only a small subset of p53 target genes; this includes the epigenetic modifier PADI4, which deiminates arginine to the nonnatural amino acid citrulline. Surprisingly, we show that Y107H mice develop spontaneous cancers and metastases and that Y107H shows impaired tumor suppression in two other models. We show that PADI4 is itself tumor suppressive and that it requires an intact immune system for tumor suppression. We identify a p53-PADI4 gene signature that is predictive of survival and the efficacy of immune-checkpoint inhibitors. SIGNIFICANCE: We analyze the African-centric Y107H hypomorphic variant and show that it confers increased cancer risk; we use Y107H in order to identify PADI4 as a key tumor-suppressive p53 target gene that contributes to an immune modulation signature and that is predictive of cancer survival and the success of immunotherapy. See related commentary by Bhatta and Cooks, p. 1518. This article is highlighted in the In This Issue feature, p. 1501.
Assuntos
Genes p53 , Neoplasias , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , População Africana/genética , Neoplasias/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Methyl-CpG binding proteins play an essential role in translating DNA methylation marks into a downstream transcriptional response, which has implications for both normal cell function as well as disease. Although for many of these proteins, a detailed mechanistic understanding for how this cellular process is mediated remains to be determined. ZBTB38 is an under-characterized member of the zinc finger (ZF) family of methyl-CpG binding proteins. Functional knowledge has been gained for its conserved methylated DNA binding N-terminal ZF region; however, a specific role for the C-terminal set of five ZFs remains to be elucidated. Here we demonstrate for the first time that a subset of the C-terminal ZBTB38 ZFs exhibit high-affinity DNA interactions and that preferential targeting of the consensus DNA site is methyl specific. Utilizing a hybrid approach, a model for the C-terminal ZBTB38 ZFs in complex with its cognate DNA target is proposed, providing insight into a possible novel mode of methylated DNA recognition. Furthermore, it is shown that the C-terminal ZFs of ZBTB38 can directly occupy promoters harboring the newly identified sequence motif in cell in a methyl-dependent manner and, depending on the gene context, contribute to modulating transcriptional response. Combined, these findings provide evidence for a key and novel physiological function for the C-terminal ZF domain of ZBTB38.
Assuntos
Metilação de DNA , DNA/metabolismo , Proteínas Repressoras/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Ilhas de CpG , DNA/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas Repressoras/químicaRESUMO
Protein-protein interactions represent an exciting and challenging target class for therapeutic intervention using small molecules. Protein interaction sites are often devoid of the deep surface pockets presented by "traditional" drug targets, and crystal structures reveal that inhibitors typically engage these sites using very shallow binding modes. As a consequence, modern virtual screening tools developed to identify inhibitors of traditional drug targets do not perform as well when they are instead deployed at protein interaction sites. To address the need for novel inhibitors of important protein interactions, here we introduce an alternate docking strategy specifically designed for this regime. Our method, termed DARC (Docking Approach using Ray-Casting), matches the topography of a surface pocket "observed" from within the protein to the topography "observed" when viewing a potential ligand from the same vantage point. We applied DARC to carry out a virtual screen against the protein interaction site of human antiapoptotic protein Mcl-1 and found that four of the top-scoring 21 compounds showed clear inhibition in a biochemical assay. The Ki values for these compounds ranged from 1.2 to 21 µM, and each had ligand efficiency comparable to promising small-molecule inhibitors of other protein-protein interactions. These hit compounds do not resemble the natural (protein) binding partner of Mcl-1, nor do they resemble any known inhibitors of Mcl-1. Our results thus demonstrate the utility of DARC for identifying novel inhibitors of protein-protein interactions.