Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 169(3): 442-456.e18, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431245

RESUMO

Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B6, B9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease.


Assuntos
Antineoplásicos/metabolismo , Escherichia coli/metabolismo , Fluoruracila/metabolismo , Microbioma Gastrointestinal , Animais , Autofagia , Caenorhabditis elegans , Morte Celular , Neoplasias Colorretais/tratamento farmacológico , Dieta , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Modelos Animais , Pentosiltransferases/genética
2.
J Inherit Metab Dis ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044746

RESUMO

Argininosuccinate lyase (ASL) is integral to the urea cycle detoxifying neurotoxic ammonia and the nitric oxide (NO) biosynthesis cycle. Inherited ASL deficiency causes argininosuccinic aciduria (ASA), a rare disease with hyperammonemia and NO deficiency. Patients present with developmental delay, epilepsy and movement disorder, associated with NO-mediated downregulation of central catecholamine biosynthesis. A neurodegenerative phenotype has been proposed in ASA. To better characterise this neurodegenerative phenotype in ASA, we conducted a retrospective study in six paediatric and adult metabolic centres in the UK in 2022. We identified 60 patients and specifically looked for neurodegeneration-related symptoms: movement disorder such as ataxia, tremor and dystonia, hypotonia/fatigue and abnormal behaviour. We analysed neuroimaging with diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) in an individual with ASA with movement disorders. We assessed conventional and DTI MRI alongside single photon emission computer tomography (SPECT) with dopamine analogue radionuclide 123 I-ioflupane, in Asl-deficient mice treated by hASL mRNA with normalised ureagenesis. Movement disorders in ASA appear in the second and third decades of life, becoming more prevalent with ageing and independent from the age of onset of hyperammonemia. Neuroimaging can show abnormal DTI features affecting both grey and white matter, preferentially basal ganglia. ASA mouse model with normalised ureagenesis did not recapitulate these DTI findings and showed normal 123 I-ioflupane SPECT and cerebral dopamine metabolomics. Altogether these findings support the pathophysiology of a late-onset movement disorder with cell-autonomous functional central catecholamine dysregulation but without or limited neurodegeneration of dopaminergic neurons, making these symptoms amenable to targeted therapy.

3.
Dev Med Child Neurol ; 64(12): 1539-1546, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35833379

RESUMO

AIM: Using Niemann-Pick type C disease (NPC) as a paradigm, we aimed to improve biomarker discovery in patients with neurometabolic disorders. METHOD: Using a multiplexed liquid chromatography tandem mass spectrometry dried bloodspot assay, we developed a selective intelligent biomarker panel to monitor known biomarkers N-palmitoyl-O-phosphocholineserine and 3ß,5α,6ß-trihydroxy-cholanoyl-glycine as well as compounds predicted to be affected in NPC pathology. We applied this panel to a clinically relevant paediatric patient cohort (n = 75; 35 males, 40 females; mean age 7 years 6 months, range 4 days-19 years 8 months) presenting with neurodevelopmental and/or neurodegenerative pathology, similar to that observed in NPC. RESULTS: The panel had a far superior performance compared with individual biomarkers. Namely, NPC-related established biomarkers used individually had 91% to 97% specificity but the combined panel had 100% specificity. Moreover, multivariate analysis revealed long-chain isoforms of glucosylceramide were elevated and very specific for patients with NPC. INTERPRETATION: Despite advancements in next-generation sequencing and precision medicine, neurological non-enzymatic disorders remain difficult to diagnose and lack robust biomarkers or routine functional testing for genetic variants of unknown significance. Biomarker panels may have better diagnostic accuracy than individual biomarkers in neurometabolic disorders, hence they can facilitate more prompt disease identification and implementation of emerging targeted, disease-specific therapies. WHAT THIS PAPER ADDS: Intelligent biomarker panel design can help expedite diagnosis in neurometabolic disorders. In Niemann-Pick type C disease, such a panel performed better than individual biomarkers. Biomarker panels are easy to implement and widely applicable to neurometabolic conditions.


Assuntos
Doença de Niemann-Pick Tipo C , Masculino , Feminino , Criança , Humanos , Recém-Nascido , Doença de Niemann-Pick Tipo C/diagnóstico , Biomarcadores
4.
Ann Neurol ; 86(2): 225-240, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31187503

RESUMO

OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240.


Assuntos
Mutação/genética , Polineuropatias/tratamento farmacológico , Polineuropatias/genética , Piridoxal Quinase/genética , Fosfato de Piridoxal/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Suplementos Nutricionais , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Resultado do Tratamento
5.
Am J Hum Genet ; 99(6): 1325-1337, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912044

RESUMO

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B6 vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested. Whole-exome sequencing of two children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial), PROSC, which encodes a PLP-binding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified four additional children with biallelic PROSC mutations. Pre-treatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant lacking the PROSC homolog (ΔYggS) is pyridoxine sensitive; complementation with human PROSC restored growth whereas hPROSC encoding p.Leu175Pro, p.Arg241Gln, and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells, which is how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Although the mechanism involved is not fully understood, our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions.


Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Homeostase/genética , Mutação , Proteínas/genética , Fosfato de Piridoxal/metabolismo , Vitamina B 6/metabolismo , Adolescente , Carnosina/análogos & derivados , Carnosina/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Exoma/genética , Feminino , Fibroblastos , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Prolina/metabolismo , Vitamina B 6/sangue
6.
J Inherit Metab Dis ; 42(4): 629-646, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30671974

RESUMO

Vitamin B6 is present in our diet in many forms, however, only pyridoxal 5'-phosphate (PLP) can function as a cofactor for enzymes. The intestine absorbs nonphosphorylated B6 vitamers, which are converted by specific enzymes to the active PLP form. The role of PLP is enabled by its reactive aldehyde group. Pathways reliant on PLP include amino acid and neurotransmitter metabolism, folate and 1-carbon metabolism, protein and polyamine synthesis, carbohydrate and lipid metabolism, mitochondrial function and erythropoiesis. Besides the role of PLP as a cofactor B6 vitamers also play other cellular roles, for example, as antioxidants, modifying expression and action of steroid hormone receptors, affecting immune function, as chaperones and as an antagonist of Adenosine-5'-triphosphate (ATP) at P2 purinoceptors. Because of the vital role of PLP in neurotransmitter metabolism, particularly synthesis of the inhibitory transmitter γ-aminobutyric acid, it is not surprising that various inborn errors leading to PLP deficiency manifest as B6 -responsive epilepsy, usually of early onset. This includes pyridox(am)ine phosphate oxidase deficiency (a disorder affecting PLP synthesis and recycling), disorders affecting PLP import into the brain (hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects), a disorder of an intracellular PLP-binding protein (PLPBP, previously named PROSC) and disorders where metabolites accumulate that inactivate PLP, for example, ALDH7A1 deficiency and hyperprolinaemia type II. Patients with these disorders can show rapid control of seizures in response to either pyridoxine and/or PLP with a lifelong dependency on supraphysiological vitamin B6 supply. The clinical and biochemical features of disorders leading to B6 -responsive seizures and the treatment of these disorders are described in this review.


Assuntos
Epilepsia/etiologia , Deficiência de Vitamina B 6/complicações , Vitamina B 6/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Humanos , Erros Inatos do Metabolismo/metabolismo , Prolina/sangue , Fosfato de Piridoxal/uso terapêutico , Piridoxaminafosfato Oxidase/deficiência , Piridoxina/uso terapêutico
7.
Hum Mol Genet ; 24(19): 5500-11, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26199318

RESUMO

Vitamin B6 in the form of pyridoxine (PN) is one of the most widespread pharmacological therapies for inherited diseases involving pyridoxal phosphate (PLP)-dependent enzymes, including primary hyperoxaluria type I (PH1). PH1 is caused by a deficiency of liver-peroxisomal alanine: glyoxylate aminotransferase (AGT), which allows glyoxylate oxidation to oxalate leading to the deposition of insoluble calcium oxalate in the kidney. Only a minority of PH1 patients, mostly bearing the F152I and G170R mutations, respond to PN, the only pharmacological treatment currently available. Moreover, excessive doses of PN reduce the specific activity of AGT in a PH1 cellular model. Nevertheless, the possible effect(s) of other B6 vitamers has not been investigated previously. Here, we compared the ability of PN in rescuing the effects of the F152I and G170R mutations with that of pyridoxamine (PM) and PL. We found that supplementation with PN raises the intracellular concentration of PN phosphate (PNP), which competes with PLP for apoenzyme binding leading to the formation of an inactive AGT-PNP complex. In contrast, PNP does not accumulate in the cell upon PM or PL supplementation, but higher levels of PLP and PM phosphate (PMP), the two active forms of the AGT coenzyme, are found. This leads to an increased ability of PM and PL to rescue the effects of the F152I and G170R mutations compared with PN. A similar effect was also observed for other folding-defective AGT variants. Thus, PM and PL should be investigated as matter of importance as therapeutics for PH1 patients bearing folding mutations.


Assuntos
Hiperoxalúria Primária/genética , Piridoxal/farmacologia , Piridoxamina/farmacologia , Piridoxina/farmacologia , Transaminases/química , Complexo Vitamínico B/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Hiperoxalúria Primária/tratamento farmacológico , Mutação/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Transaminases/genética
8.
Anal Chem ; 89(17): 8892-8900, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28782931

RESUMO

We report the development of a rapid, simple, and robust LC-MS/MS-based enzyme assay using dried blood spots (DBS) for the diagnosis of pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (OMIM 610090). PNPO deficiency leads to potentially fatal early infantile epileptic encephalopathy, severe developmental delay, and other features of neurological dysfunction. However, upon prompt treatment with high doses of vitamin B6, affected patients can have a normal developmental outcome. Prognosis of these patients is therefore reliant upon a rapid diagnosis. PNPO activity was quantified by measuring pyridoxal 5'-phosphate (PLP) concentrations in a DBS before and after a 30 min incubation with pyridoxine 5'-phosphate (PNP). Samples from 18 PNPO deficient patients (1 day-25 years), 13 children with other seizure disorders receiving B6 supplementation (1 month-16 years), and 37 child hospital controls (5 days-15 years) were analyzed. DBS from the PNPO-deficient samples showed enzyme activity levels lower than all samples from these two other groups as well as seven adult controls; no false positives or negatives were identified. The method was fully validated and is suitable for translation into the clinical diagnostic arena.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Epilepsia/diagnóstico , Piridoxaminafosfato Oxidase/metabolismo , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Área Sob a Curva , Estudos de Casos e Controles , Criança , Pré-Escolar , Teste em Amostras de Sangue Seco , Epilepsia/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Masculino , Fosfato de Piridoxal/sangue , Piridoxamina/análogos & derivados , Piridoxamina/sangue , Curva ROC , Vitamina B 6/química , Vitamina B 6/metabolismo , Vitamina B 6/uso terapêutico , Adulto Jovem
9.
J Inherit Metab Dis ; 40(3): 385-394, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28255779

RESUMO

Mutations in SLC25A22 are known to cause neonatal epileptic encephalopathy and migrating partial seizures in infancy. Using whole exome sequencing we identified four novel SLC25A22 mutations in six children from three families. Five patients presented clinical features similar to those in the literature including hypotonia, refractory neonatal-onset seizures and developmental delay. However, the sixth patients presented atypically with isolated developmental delay, developing late-onset (absence) seizures only at 7 years of age. Abnormal metabolite levels have not been documented in the nine patients described previously. One patient in our series was referred to the metabolic clinic because of persistent hyperprolinaemia and another three had raised plasma proline when tested. Analysis of the post-prandial plasma amino acid response in one patient showed abnormally high concentrations of several amino acids. This suggested that, in the fed state, when amino acids are the preferred fuel for the liver, trans-deamination of amino acids requires transportation of glutamate into liver mitochondria by SLC25A22 for deamination by glutamate dehydrogenase; SLC25A22 is an important mitochondrial glutamate transporter in liver as well as in brain. Electron microscopy of patient fibroblasts demonstrated widespread vacuolation containing neutral and phospho-lipids as demonstrated by Oil Red O and Sudan Black tinctorial staining; this might be explained by impaired activity of the proline/pyrroline-5-carboxylate (P5C) shuttle if SLC25A22 transports pyrroline-5-carboxylate/glutamate-γ-semialdehyde as well as glutamate.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/genética , Fibroblastos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Criança , Pré-Escolar , Feminino , Ácido Glutâmico/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Prolina/metabolismo , Convulsões/genética , Convulsões/metabolismo
10.
J Inherit Metab Dis ; 40(3): 423-431, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28205048

RESUMO

BACKGROUND: Elevated urinary excretion of orotic acid is associated with treatable disorders of the urea cycle and pyrimidine metabolism. Establishing the correct and timely diagnosis in a patient with orotic aciduria is key to effective treatment. Uridine monophosphate synthase is involved in de novo pyrimidine synthesis. Uridine monophosphate synthase deficiency (or hereditary orotic aciduria), due to biallelic mutations in UMPS, is a rare condition presenting with megaloblastic anemia in the first months of life. If not treated with the pyrimidine precursor uridine, neutropenia, failure to thrive, growth retardation, developmental delay, and intellectual disability may ensue. METHODS AND RESULTS: We identified mild and isolated orotic aciduria in 11 unrelated individuals with diverse clinical signs and symptoms, the most common denominator being intellectual disability/developmental delay. Of note, none had blood count abnormalities, relevant hyperammonemia or altered plasma amino acid profile. All individuals were found to have heterozygous alterations in UMPS. Four of these variants were predicted to be null alleles with complete loss of function. The remaining variants were missense changes and predicted to be damaging to the normal encoded protein. Interestingly, family screening revealed heterozygous UMPS variants in combination with mild orotic aciduria in 19 clinically asymptomatic family members. CONCLUSIONS: We therefore conclude that heterozygous UMPS-mutations can lead to mild and isolated orotic aciduria without clinical consequence. Partial UMPS-deficiency should be included in the differential diagnosis of mild orotic aciduria. The discovery of heterozygotes manifesting clinical symptoms such as hypotonia and developmental delay are likely due to ascertainment bias.


Assuntos
Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Orotato Fosforribosiltransferase/deficiência , Orotidina-5'-Fosfato Descarboxilase/deficiência , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Anemia Megaloblástica/genética , Anemia Megaloblástica/metabolismo , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Mutação/genética , Orotato Fosforribosiltransferase/genética , Orotato Fosforribosiltransferase/metabolismo , Ácido Orótico/metabolismo , Orotidina-5'-Fosfato Descarboxilase/genética , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Pirimidinas/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Uridina/metabolismo
11.
J Inherit Metab Dis ; 40(3): 357-368, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28251416

RESUMO

OBJECTIVES: This UK-wide study defines the natural history of argininosuccinic aciduria and compares long-term neurological outcomes in patients presenting clinically or treated prospectively from birth with ammonia-lowering drugs. METHODS: Retrospective analysis of medical records prior to March 2013, then prospective analysis until December 2015. Blinded review of brain MRIs. ASL genotyping. RESULTS: Fifty-six patients were defined as early-onset (n = 23) if symptomatic < 28 days of age, late-onset (n = 23) if symptomatic later, or selectively screened perinatally due to a familial proband (n = 10). The median follow-up was 12.4 years (range 0-53). Long-term outcomes in all groups showed a similar neurological phenotype including developmental delay (48/52), epilepsy (24/52), ataxia (9/52), myopathy-like symptoms (6/52) and abnormal neuroimaging (12/21). Neuroimaging findings included parenchymal infarcts (4/21), focal white matter hyperintensity (4/21), cortical or cerebral atrophy (4/21), nodular heterotopia (2/21) and reduced creatine levels in white matter (4/4). 4/21 adult patients went to mainstream school without the need of additional educational support and 1/21 lives independently. Early-onset patients had more severe involvement of visceral organs including liver, kidney and gut. All early-onset and half of late-onset patients presented with hyperammonaemia. Screened patients had normal ammonia at birth and received treatment preventing severe hyperammonaemia. ASL was sequenced (n = 19) and 20 mutations were found. Plasma argininosuccinate was higher in early-onset compared to late-onset patients. CONCLUSIONS: Our study further defines the natural history of argininosuccinic aciduria and genotype-phenotype correlations. The neurological phenotype does not correlate with the severity of hyperammonaemia and plasma argininosuccinic acid levels. The disturbance in nitric oxide synthesis may be a contributor to the neurological disease. Clinical trials providing nitric oxide to the brain merit consideration.


Assuntos
Acidúria Argininossuccínica/patologia , Acidúria Argininossuccínica/terapia , Adolescente , Adulto , Amônia/metabolismo , Ácido Argininossuccínico/sangue , Acidúria Argininossuccínica/sangue , Acidúria Argininossuccínica/genética , Criança , Pré-Escolar , Feminino , Seguimentos , Genótipo , Humanos , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Estudos Prospectivos , Estudos Retrospectivos , Adulto Jovem
12.
Brain ; 139(11): 2844-2854, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27604308

RESUMO

Neurometabolic disorders are markedly heterogeneous, both clinically and genetically, and are characterized by variable neurological dysfunction accompanied by suggestive neuroimaging or biochemical abnormalities. Despite early specialist input, delays in diagnosis and appropriate treatment initiation are common. Next-generation sequencing approaches still have limitations but are already enabling earlier and more efficient diagnoses in these patients. We designed a gene panel targeting 614 genes causing inborn errors of metabolism and tested its diagnostic efficacy in a paediatric cohort of 30 undiagnosed patients presenting with variable neurometabolic phenotypes. Genetic defects that could, at least partially, explain observed phenotypes were identified in 53% of cases. Where biochemical abnormalities pointing towards a particular gene defect were present, our panel identified diagnoses in 89% of patients. Phenotypes attributable to defects in more than one gene were seen in 13% of cases. The ability of in silico tools, including structure-guided prediction programmes to characterize novel missense variants were also interrogated. Our study expands the genetic, clinical and biochemical phenotypes of well-characterized (POMGNT1, TPP1) and recently identified disorders (PGAP2, ACSF3, SERAC1, AFG3L2, DPYS). Overall, our panel was accurate and efficient, demonstrating good potential for applying similar approaches to clinically and biochemically diverse neurometabolic disease cohorts.


Assuntos
Encefalopatias Metabólicas/genética , Predisposição Genética para Doença , Erros Inatos do Metabolismo/genética , Adolescente , Encefalopatias Metabólicas/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Testes Genéticos , Genótipo , Humanos , Imageamento Tridimensional , Lactente , Imageamento por Ressonância Magnética , Masculino , Erros Inatos do Metabolismo/diagnóstico por imagem , Fenótipo , Tripeptidil-Peptidase 1 , Adulto Jovem
13.
Epilepsia ; 57(5): e97-e102, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27061686

RESUMO

Pontocerebellar hypoplasia is a group of heterogeneous neurodevelopmental disorders characterized by reduced volume of the brainstem and cerebellum. We report two male siblings who presented with early infantile clonic seizures, and then developed infantile spasms associated with prominent isolated cerebellar hypoplasia/atrophy on magnetic resonance imaging (MRI). Using whole exome sequencing techniques, both were found to be compound heterozygotes for one previously reported and one novel mutation in the gene encoding mitochondrial arginyl-tRNA synthetase 2 (RARS2). Mutations in this gene have been classically described in pontocerebellar hypoplasia type six (PCH6), a phenotype characterized by early (often intractable) seizures, profound developmental delay, and progressive pontocerebellar atrophy. The electroclinical spectrum of PCH6 is broad and includes a number of seizure types: myoclonic, generalized tonic-clonic, and focal clonic seizures. Our report expands the characterization of the PCH6 disease spectrum and presents infantile spasms as an associated electroclinical phenotype.


Assuntos
Arginina-tRNA Ligase/genética , Mutação/genética , Irmãos , Espasmos Infantis/genética , Pré-Escolar , Análise Mutacional de DNA , Humanos , Recém-Nascido , Masculino
14.
Am J Hum Genet ; 90(3): 457-66, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22341972

RESUMO

Environmental manganese (Mn) toxicity causes an extrapyramidal, parkinsonian-type movement disorder with characteristic magnetic resonance images of Mn accumulation in the basal ganglia. We have recently reported a suspected autosomal recessively inherited syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia in cases without environmental Mn exposure. Whole-genome mapping of two consanguineous families identified SLC30A10 as the affected gene in this inherited type of hypermanganesemia. This gene was subsequently sequenced in eight families, and homozygous sequence changes were identified in all affected individuals. The function of the wild-type protein and the effect of sequence changes were studied in the manganese-sensitive yeast strain Δpmr1. Expressing human wild-type SLC30A10 in the Δpmr1 yeast strain rescued growth in high Mn conditions, confirming its role in Mn transport. The presence of missense (c.266T>C [p.Leu89Pro]) and nonsense (c.585del [p.Thr196Profs(∗)17]) mutations in SLC30A10 failed to restore Mn resistance. Previously, SLC30A10 had been presumed to be a zinc transporter. However, this work has confirmed that SLC30A10 functions as a Mn transporter in humans that, when defective, causes Mn accumulation in liver and brain. This is an important step toward understanding Mn transport and its role in neurodegenerative processes.


Assuntos
Proteínas de Transporte de Cátions/genética , Códon sem Sentido , Intoxicação por Manganês/genética , Manganês/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Mutação de Sentido Incorreto , Adolescente , Adulto , Sequência de Aminoácidos , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Criança , Pré-Escolar , Mapeamento Cromossômico/métodos , Feminino , Predisposição Genética para Doença , Humanos , Fígado/metabolismo , Masculino , Intoxicação por Manganês/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Adulto Jovem , Transportador 8 de Zinco
15.
Brain ; 137(Pt 5): 1350-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24645144

RESUMO

The first described patients with pyridox(am)ine 5'-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5'-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5'-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5'-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5'-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5'-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5'-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin mononucleotide or pyridoxal 5'-phosphate and many of them showed residual enzyme activity. One sequence change (R116Q), predicted to affect flavin mononucleotide binding and binding of the two PNPO dimers, and with high residual activity was found in Groups (ii) and (iii). This sequence change has been reported in the 1000 Genomes project suggesting it could be a polymorphism but alternatively it could be a common mutation, perhaps responsible for the susceptibility locus for genetic generalized epilepsy on 17q21.32 (close to rs72823592). We believe the reduction in PNPO activity and B6-responsive epilepsy in the patients reported here indicates that it contributes to the pathogenesis of epilepsy.


Assuntos
Meio Ambiente , Epilepsia/genética , Mutação/genética , Piridoxaminafosfato Oxidase/genética , Anticonvulsivantes/uso terapêutico , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/terapia , Feminino , Células HeLa , Humanos , Lactente , Masculino , Mutagênese Sítio-Dirigida/métodos , Fosfato de Piridoxal/uso terapêutico , Piridoxaminafosfato Oxidase/metabolismo , Transfecção , Adulto Jovem
17.
J Inherit Metab Dis ; 37(5): 851-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24658845

RESUMO

A child of consanguineous parents of Pakistani origin developed jaundice at 5 weeks and then, at 3 months, irritability, a prolonged prothrombin time, a low albumin, and episodes of hypoglycaemia. Investigation showed an elevated alanine aminotransferase with a normal γ-glutamyl-transpeptidase. Analysis of urine by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) showed that the major peaks were m/z 480 (taurine-conjugated 3ß-hydroxy-5-cholenoic acid) and m/z 453 (sulphated 3ß-hydroxy-5-cholenoic acid). Analysis of plasma by gas chromatography-mass spectrometry (GC-MS) showed increased concentrations of 3ß-hydroxy-5-cholenoic acid, 3ß-hydroxy-5-cholestenoic acid and 27-hydroxycholesterol, indicating oxysterol 7 α-hydroxylase deficiency. The patient was homozygous for a mutation (c.1249C>T) in CYP7B1 that alters a highly conserved residue in oxysterol 7 α-hydroxylase (p.R417C) - previously reported in a family with hereditary spastic paraplegia type 5. On treatment with ursodeoxycholic acid (UDCA), his condition was worsening, but on chenodeoxycholic acid (CDCA), 15 mg/kg/d, he improved rapidly. A biopsy (after 2 weeks on CDCA), showed a giant cell hepatitis, an evolving micronodular cirrhosis, and steatosis. The improvement in liver function on CDCA was associated with a drop in the plasma concentrations and urinary excretions of the 3ß-hydroxy-Δ5 bile acids which are considered hepatotoxic. At age 5 years (on CDCA, 6 mg/kg/d), he was thriving with normal liver function. Neurological development was normal apart from a tendency to trip. Examination revealed pes cavus but no upper motor neuron signs. The findings in this case suggest that CDCA can reduce the activity of cholesterol 27-hydroxylase - the first step in the acidic pathway for bile acid synthesis.


Assuntos
Ácido Quenodesoxicólico/uso terapêutico , Hepatopatias/tratamento farmacológico , Hepatopatias/genética , Esteroide Hidroxilases/deficiência , Esteroide Hidroxilases/genética , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/urina , Consanguinidade , Família 7 do Citocromo P450 , Humanos , Lactente , Fígado/patologia , Hepatopatias/enzimologia , Masculino , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/genética
18.
Sci Transl Med ; 16(729): eadh1334, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198573

RESUMO

The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.


Assuntos
Acidúria Argininossuccínica , Hepatopatias , Adulto , Humanos , Animais , Camundongos , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/terapia , Cisteína , Glutationa , Metabolômica
19.
J Inherit Metab Dis ; 36(1): 139-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22576361

RESUMO

Vitamin B(6) dependent seizure disorders are an important and treatable cause of childhood epilepsy. The molecular and biochemical basis for some of these disorders has only recently been elucidated and it is likely that inborn errors affecting other parts of this complex metabolic pathway are yet to be described. In man vitamin B(6) ingested from the diet exists as six different vitamers, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5'-phosphate (PLP), pyridoxamine 5'- phosphate (PMP) and pyridoxine 5'-phosphate (PNP). Its breakdown product, 4-pyridoxic acid (PA), is excreted in urine. Here we describe an analytical LC-MS/MS method to measure all vitameric B(6) forms in plasma and have subsequently applied this methodology to investigate children with vitamin B(6) responsive seizure disorders. We show that patients with inborn errors of B(6) metabolism such as pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency have characteristic B(6) profiles which allow them to be differentiated from each other and control populations, even when on treatment with B(6). Regardless of diagnosis, patients on treatment doses of pyridoxine hydrochloride and pyridoxal phosphate have markedly elevated levels of some vitameric forms (PLP, PL and PA). Such mega doses of B(6) treatment are known to be associated with neurotoxicity. This LC-MS/MS method will be a useful tool for treatment monitoring and may help further our understanding of mechanisms of neurotoxicity in patient groups.


Assuntos
Erros Inatos do Metabolismo/sangue , Vitamina B 6/sangue , Adolescente , Criança , Pré-Escolar , Cromatografia Líquida/métodos , Epilepsia/sangue , Humanos , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/sangue , Piridoxina/sangue , Espectrometria de Massas em Tandem/métodos
20.
Nat Med ; 12(3): 307-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16491085

RESUMO

We show here that children with pyridoxine-dependent seizures (PDS) have mutations in the ALDH7A1 gene, which encodes antiquitin; these mutations abolish the activity of antiquitin as a delta1-piperideine-6-carboxylate (P6C)-alpha-aminoadipic semialdehyde (alpha-AASA) dehydrogenase. The accumulating P6C inactivates pyridoxal 5'-phosphate (PLP) by forming a Knoevenagel condensation product. Measurement of urinary alpha-AASA provides a simple way of confirming the diagnosis of PDS and ALDH7A1 gene analysis provides a means for prenatal diagnosis.


Assuntos
Aldeído Desidrogenase/genética , Mutação/genética , Piridoxina/metabolismo , Convulsões/genética , Animais , Proteínas de Bactérias/metabolismo , Células CHO , Criança , Pré-Escolar , Cricetinae , Cricetulus , Éxons/genética , Heterozigoto , Homozigoto , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Ácidos Pipecólicos/metabolismo , Prolina/metabolismo , Fosfato de Piridoxal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA