Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.583
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(4): 606-624, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868238

RESUMO

Epigenetic reprogramming plays a critical role in chondrocyte senescence during osteoarthritis (OA) pathology, but the underlying molecular mechanisms remain to be elucidated. Here, using large-scale individual datasets and genetically engineered (Col2a1-CreERT2;Eldrflox/flox and Col2a1-CreERT2;ROSA26-LSL-Eldr+/+ knockin) mouse models, we show that a novel transcript of long noncoding RNA ELDR is essential for the development of chondrocyte senescence. ELDR is highly expressed in chondrocytes and cartilage tissues of OA. Mechanistically, exon 4 of ELDR physically mediates a complex consisting of hnRNPL and KAT6A to regulate histone modifications of the promoter region of IHH, thereby activating hedgehog signaling and promoting chondrocyte senescence. Therapeutically, GapmeR-mediated silencing of ELDR in the OA model substantially attenuates chondrocyte senescence and cartilage degradation. Clinically, ELDR knockdown in cartilage explants from OA-affected individuals decreased the expression of senescence markers and catabolic mediators. Taken together, these findings uncover an lncRNA-dependent epigenetic driver in chondrocyte senescence, highlighting that ELDR could be a promising therapeutic avenue for OA.


Assuntos
Cartilagem Articular , Osteoartrite , RNA Longo não Codificante , Camundongos , Animais , Condrócitos/metabolismo , Condrócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromatina/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Proteínas Hedgehog/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia
2.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829910

RESUMO

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Assuntos
Herpesvirus Humano 1 , Imunidade Inata , Humanos , Animais , Herpesvirus Humano 1/imunologia , Camundongos , Replicação Viral , Herpes Simples/imunologia , Herpes Simples/virologia , Herpes Simples/metabolismo , Transdução de Sinais , Células HEK293 , Proteínas Repressoras
3.
J Am Chem Soc ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987861

RESUMO

Inspired by enzymatic catalysis, it is crucial to construct hydrogen-bonding-rich microenvironment around catalytic sites; unfortunately, its precise construction and understanding how the distance between such microenvironment and catalytic sites affects the catalysis remain significantly challenging. In this work, a series of metal-organic framework (MOF)-based single-atom Ru1 catalysts, namely, Ru1/UiO-67-X (X = -H, -m-(NH2)2, -o-(NH2)2), have been synthesized, where the distance between the hydrogen-bonding microenvironment and Ru1 sites is modulated by altering the location of amino groups. The -NH2 group can form hydrogen bonds with H2O, constituting a unique microenvironment that causes an increased water concentration around the Ru1 sites. Remarkably, Ru1/UiO-67-o-(NH2)2 displays a superior photocatalytic hydrogen production rate, ∼4.6 and ∼146.6 times of Ru1/UiO-67-m-(NH2)2 and Ru1/UiO-67, respectively. Both experimental and computational results suggest that the close proximity of amino groups to the Ru1 sites in Ru1/UiO-67-o-(NH2)2 improves charge transfer and H2O dissociation, accounting for the promoted photocatalytic hydrogen production.

4.
J Am Chem Soc ; 146(13): 9272-9284, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517743

RESUMO

Metal halide perovskites (MHPs) have garnered significant attention due to their distinctive optical and electronic properties, coupled with excellent processability. However, the thermal characteristics of these materials are often overlooked, which can be harnessed to cater to diverse application scenarios. We showcase the efficacy of lowering the congruent melting temperature (Tm) of layered 2D MHPs by employing a strategy that involves the modification of flexible alkylammonium through N-methylation and I-substitution. Structural-property analysis reveals that the N-methylation and I-substitution play pivotal roles in reducing hydrogen bond interactions between the organic components and inorganic parts, lowering the rotational symmetry number of the cation and restricting the residual motion of the cations. Additional I···I interactions enhance intermolecular interactions and lead to improved molten stability, as evidenced by a higher viscosity. The 2D MHPs discussed in this study exhibit low Tm and wide melt-processable windows, e.g., (DMIPA)2PbI4 showcasing a low Tm of 98 °C and large melt-processable window of 145 °C. The efficacy of the strategy was further validated when applied to bromine-substituted 2D MHPs. Lowering the Tm and enhancing the molten stability of the MHPs hold great promise for various applications, including glass formation, preparation of high-quality films for photodetection, and fabrication of flexible devices.

5.
J Am Chem Soc ; 146(9): 6336-6344, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381858

RESUMO

Actuating materials convert different forms of energy into mechanical responses. To satisfy various application scenarios, they are desired to have rich categories, novel functionalities, clear structure-property relationships, fast responses, and, in particular, giant and reversible shape changes. Herein, we report a phase transition-driven ferroelectric crystal, (rac-3-HOPD)PbI3 (3-HOPD = 3-hydroxypiperidine cation), showing intriguingly large and anisotropic room-temperature actuating behaviors. The crystal consists of rigid one-dimensional [PbI3] anionic chains running along the a-axis and discrete disk-like cations loosely wrapping around the chains, leaving room for anisotropic shape changes in both the b- and c-axes. The shape change is switched by a ferroelectric phase transition occurring at around room temperature (294 K), driven by the exceptionally synergistic order-disorder and displacive phase transition. The rotation of the cations exerts internal pressure on the stacking structure to trigger an exceptionally large displacement of the inorganic chains, corresponding to a crystal lattice transformation with length changes of +24.6% and -17.5% along the b- and c-axis, respectively. Single crystal-based prototype devices of circuit switches and elevators have been fabricated by exploiting the unconventional negative temperature-dependent actuating behaviors. This work provides a new model for the development of multifunctional mechanically responsive materials.

6.
Eur J Immunol ; 53(3): e2250122, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597350

RESUMO

Autoimmune demyelinating diseases can be induced by an immune response against myelin peptides; however, the exact mechanism underlying the development of such diseases remains unclear. In experimental autoimmune encephalomyelitis, we found that the clearance of exogenous myelin antigen at the peak of the primary immune response is key to the pathogenesis of the disease. The generation of effector T cells requires continuous antigen stimulation, whereas redundant antigen traps and exhausts effector T cells in the periphery, which induces resistance to the disease. Moreover, insufficient antigenic stimulation fails to induce disease efficiently owing to insufficient numbers of effector T cells. When myelin antigen is entirely cleared, the number of effector T cells reaches a peak, which facilitates infiltration of more effector T cells into the central nervous system. The peripheral antigen clearance initiates the first wave of effector T cell entry into the central nervous system and induces chronic inflammation. The inflamed central nervous system recruits the second wave of effector T cells that worsen inflammation, resulting in loss of self-tolerance. These findings provide new insights into the mechanism underlying the development of autoimmune demyelinating diseases, which may potentially impact future treatments.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Linfócitos T , Sistema Nervoso Central/patologia , Inflamação , Imunidade
7.
Am J Pathol ; 193(8): 1059-1071, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164274

RESUMO

Unexplained recurrent spontaneous abortion (URSA) has been associated with the dysfunction of trophoblasts and decidual macrophages. Current evidence suggests that profilin1 (PFN1) plays an important role in many biological processes. However, little is known about whether PFN1 is related to URSA. Herein, the location of PFN1 was detected by immunohistochemistry, and the level of PFN1 was detected by quantitative real-time PCR, Western blot analysis, and immunohistochemistry. The proliferation of trophoblasts was detected by CCK8 and 5-ethynyl-2'-deoxyuridine assays, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays were used to detect apoptosis of trophoblasts. The migration and invasion ability of trophoblasts was assessed by using the wound-healing test and transwell test. Polarization of macrophages was detected in macrophages cultured in trophoblast conditioned medium. PFN1 expression was observed in cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts and was decreased in the villous tissue of patients with URSA. The migration and invasion ability and cell viability of trophoblastic cell lines that underwent PFN1 knockdown significantly decreased, and apoptosis increased. Opposite findings were observed after the overexpression of PFN1 in trophoblastic cells. In addition, PFN1 could regulate trophoblast function through phosphatidylinositol 3-kinase/AKT signal transduction rather than mitogen-activated protein kinase signaling pathways. Finally, knockdown of PFN1 in trophoblasts promoted tumor necrosis factor-α secretion to induce macrophage polarization to M1 phenotype, mediated by the NF-κB signaling pathway. These findings indicate that PFN1 has a broad therapeutic potential for patients with URSA.


Assuntos
Aborto Espontâneo , Trofoblastos , Gravidez , Humanos , Feminino , Trofoblastos/metabolismo , Transdução de Sinais/fisiologia , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Aborto Espontâneo/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Profilinas/genética , Profilinas/metabolismo
8.
Osteoarthritis Cartilage ; 32(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802465

RESUMO

OBJECTIVE: This study aimed to explore the specific function of M2 macrophages in intervertebral disc degeneration (IDD). METHODS: Intervertebral disc (IVD) samples from normal (n = 4) and IDD (n = 6) patients were collected, and the expression of M2-polarized macrophage marker, CD206, was investigated using immunohistochemical staining. Nucleus pulposus cells (NPCs) in a TNF-α environment were obtained, and a mouse caudal IVD puncture model was established. Mice with Rheb deletions, specifically in the myeloid lineage, were generated and subjected to surgery-induced IDD. IDD-induced damage and cell apoptosis were measured using histological scoring, X-ray imaging, immunohistochemical staining, and TdT-mediated dUTP nick end labeling (TUNEL) assay. Finally, mice and NPCs were treated with R-spondin-2 (Rspo2) or anti-Rspo2 to investigate the role of Rspo2 in IDD. RESULTS: Accumulation of CD206 in human and mouse IDD tissues was detected. Rheb deletion in the myeloid lineage (RheBcKO) increased the number of CD206+ M2-like macrophages (mean difference 18.6% [15.7-21.6%], P < 0.001), decreased cell apoptosis (mean difference -15.6% [-8.9 to 22.2%], P = 0.001) and attenuated the IDD process in the mouse IDD model. NPCs treated with Rspo2 displayed increased extracellular matrix catabolism and apoptosis; co-culture with a conditioned medium derived from RheBcKO mice inhibited these changes. Anti-Rspo2 treatment in the mouse caudal IVD puncture model exerted protective effects against IDD. CONCLUSIONS: Promoting CD206+ M2-like macrophages could reduce Rspo2 secretion, thereby alleviating experimental IDD. Rheb deletion may help M2-polarized macrophages accumulate and attenuate experimental IDD partially by inhibiting Rspo2 production. Hence, M2-polarized macrophages and Rspo2 may serve as therapeutic targets for IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Camundongos , Animais , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Apoptose , Modelos Animais de Doenças , Macrófagos/metabolismo
9.
Histopathology ; 84(4): 601-613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032062

RESUMO

BACKGROUND AND AIMS: ChatGPT is a powerful artificial intelligence (AI) chatbot developed by the OpenAI research laboratory which is capable of analysing human input and generating human-like responses. Early research into the potential application of ChatGPT in healthcare has focused mainly on clinical and administrative functions. The diagnostic ability and utility of ChatGPT in histopathology is not well defined. We benchmarked the performance of ChatGPT against pathologists in diagnostic histopathology, and evaluated the collaborative potential between pathologists and ChatGPT to deliver more accurate diagnoses. METHODS AND RESULTS: In Part 1 of the study, pathologists and ChatGPT were subjected to a series of questions encompassing common diagnostic conundrums in histopathology. For Part 2, pathologists reviewed a series of challenging virtual slides and provided their diagnoses before and after consultation with ChatGPT. We found that ChatGPT performed worse than pathologists in reaching the correct diagnosis. Consultation with ChatGPT provided limited help and information generated from ChatGPT is dependent on the prompts provided by the pathologists and is not always correct. Finally, we surveyed pathologists who rated the diagnostic accuracy of ChatGPT poorly, but found it useful as an advanced search engine. CONCLUSIONS: The use of ChatGPT4 as a diagnostic tool in histopathology is limited by its inherent shortcomings. Judicious evaluation of the information and histopathology diagnosis generated from ChatGPT4 is essential and cannot replace the acuity and judgement of a pathologist. However, future advances in generative AI may expand its role in the field of histopathology.


Assuntos
Inteligência Artificial , Patologistas , Humanos , Biópsia , Encaminhamento e Consulta , Software
10.
Chemistry ; : e202401395, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802980

RESUMO

Phase transitions in molecular solids involve synergistic changes in chemical and electronic structures, leading to diversification in physical and chemical properties. Despite the pivotal role of hydrogen bonds (H-bonds) in many phase-transition materials, it is rare and challenging to chemically regulate the dynamics and to elucidate the structure-property relationship. Here, four high-spin CoII compounds were isolated and systematically investigated by modifying the ligand terminal groups (X=S, Se) and substituents (Y=Cl, Br). S-Cl and Se-Br undergo a reversible structural phase transition near room temperature, triggering the rotation of 15-crown-5 guests and the swing between syn- and anti-conformation of NCX- ligands, accompanied by switchable magnetism. Conversely, S-Br and Se-Cl retain stability in ordered and disordered phases, respectively. H-bonds geometric analysis and ab initio calculations reveal that the electronegativity of X and Y affects the strength of NY-ap-H⋅⋅⋅X interactions. Entropy-driven structural phase transitions occur when the H-bond strength is appropriate; otherwise, the phase stays unchanged if it is too strong or weak. This work highlights a phase transition driven by H-bond strength complementarity - pairing strong acceptor with weak donor and vice versa, which offers a straightforward and effective approach for designing phase-transition molecular solids from a chemical perspective.

11.
J Magn Reson Imaging ; 59(2): 639-647, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37276070

RESUMO

BACKGROUND: Assessing the glymphatic function using diffusion tensor image analysis along the perivascular space (DTI-ALPS) may be helpful for mild traumatic brain injury (mTBI) management. PURPOSE: To assess glymphatic function using DTI-ALPS and its associations with global white matter damage and cognitive impairment in mTBI. STUDY TYPE: Prospective. POPULATION: Thirty-four controls (44.1% female, mean age 49.2 years) and 58 mTBI subjects (43.1% female, mean age 48.7 years), including uncomplicated mTBI (N = 32) and complicated mTBI (N = 26). FIELD STRENGTH/SEQUENCE: 3-T, single-shot echo-planar imaging sequence. ASSESSMENT: Magnetic resonance imaging (MRI) was done within 1 month since injury. DTI-ALPS was performed to assess glymphatic function, and peak width of skeletonized mean diffusivity (PSMD) was used to assess global white matter damage. Cognitive tests included Auditory Verbal Learning Test and Digit Span Test (forward and backward). STATISTICAL TESTS: Neuroimaging findings comparisons were done between mTBI and control groups. Partial correlation and multivariable linear regression assessed the associations between DTI-ALPS, PSMD, and cognitive impairment. Mediation effects of PSMD on the relationship between DTI-ALPS and cognitive impairment were explored. P-value <0.05 was considered statistically significant, except for cognitive correlational analyses with a Bonferroni-corrected P-value set at 0.05/3 ≈ 0.017. RESULTS: mTBI showed lower DTI-ALPS and higher PSMD, especially in complicated mTBI. DTI-ALPS was significantly correlated with verbal memory (r = 0.566), attention abilities (r = 0.792), executive function (r = 0.618), and PSMD (r = -0.533). DTI-ALPS was associated with verbal memory (ß = 8.77, 95% confidence interval [CI] 5.00, 12.54), attention abilities (ß = 5.67, 95% CI 4.56, 6.97), executive function (ß = 2.34, 95% CI 1.49, 3.20), and PSMD (ß = -0.79, 95% CI -1.15, -0.43). PSMD mediated 46.29%, 20.46%, and 24.36% of the effects for the relationship between DTI-ALPS and verbal memory, attention abilities, and executive function. DATA CONCLUSION: Glymphatic function may be impaired in mTBI reflected by DTI-ALPS. Glymphatic dysfunction may cause cognitive impairment related to global white matter damage after mTBI. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Concussão Encefálica , Disfunção Cognitiva , Sistema Glinfático , Substância Branca , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Estudos Prospectivos , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia
12.
Neuroendocrinology ; : 1-13, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815558

RESUMO

INTRODUCTION: Dimenhydrinate and scopolamine are frequently used drugs, but they cause drowsiness and performance decrement. Therefore, it is crucial to find peripheral targets and develop new drugs without central side effects. This study aimed to investigate the anti-motion sickness action and inner ear-related mechanisms of atrial natriuretic peptide (ANP). METHODS: Endolymph volume in the inner ear was measured with magnetic resonance imaging and expression of AQP2 and p-AQP2 was detected with Western blot analysis and immunofluorescence method. RESULTS: Both rotational stimulus and intraperitoneal arginine vasopressin (AVP) injection induced conditioned taste aversion (CTA) to 0.15% sodium saccharin solution and an increase in the endolymph volume of the inner ear. However, intraperitoneal injection of ANP effectively alleviated the CTA behaviour and reduced the increase in the endolymph volume after rotational stimulus. Intratympanic injection of ANP also inhibited rotational stimulus-induced CTA behaviour, but anantin peptide, an inhibitor of ANP receptor A (NPR-A), blocked this inhibitory effect of ANP. Both rotational stimulus and intraperitoneal AVP injection increased the expression of AQP2 and p-AQP2 in the inner ear of rats, but these increases were blunted by ANP injection. In in vitro experiments, ANP addition decreased AVP-induced increases in the expression and phosphorylation of AQP2 in cultured endolymphatic sac epithelial cells. CONCLUSION: Therefore, the present study suggests that ANP could alleviate motion sickness through regulating endolymph volume of the inner ear increased by AVP, and this action of ANP is potentially mediated by activating NPR-A and antagonising the increasing effect of AVP on AQP2 expression and phosphorylation.

13.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001600

RESUMO

G-quadruplexes (G4s) formed by guanine-rich nucleic acids play a role in essential biological processes such as transcription and replication. Besides the >1.5 million putative G-4-forming sequences (PQSs), the human genome features >640 million single-nucleotide variations (SNVs), the most common type of genetic variation among people or populations. An SNV may alter a G4 structure when it falls within a PQS motif. To date, genome-wide PQS-SNV interactions and their impact have not been investigated. Herein, we present a study on the PQS-SNV interactions and the impact they can bring to G4 structures and, subsequently, gene expressions. Based on build 154 of the Single Nucleotide Polymorphism Database (dbSNP), we identified 5 million gains/losses or structural conversions of G4s that can be caused by the SNVs. Of these G4 variations (G4Vs), 3.4 million are within genes, resulting in an average load of >120 G4Vs per gene, preferentially enriched near the transcription start site. Moreover, >80% of the G4Vs overlap with transcription factor-binding sites and >14% with enhancers, giving an average load of 3 and 7.5 for the two regulatory elements, respectively. Our experiments show that such G4Vs can significantly influence the expression of their host genes. These results reveal genome-wide G4Vs and their impact on gene activity, emphasizing an understanding of genetic variation, from a structural perspective, of their physiological function and pathological implications. The G4Vs may also provide a unique category of drug targets for individualized therapeutics, health risk assessment, and drug development.


Assuntos
Proteínas de Ligação a DNA/ultraestrutura , Quadruplex G , Genoma Humano/genética , Conformação de Ácido Nucleico , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Sítio de Iniciação de Transcrição , Ativação Transcricional/genética
14.
Angew Chem Int Ed Engl ; : e202410097, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953455

RESUMO

While supported metal nanoparticles (NPs) have shown significant promise in heterogeneous catalysis, precise control over their interaction with the support, which profoundly impacts their catalytic performance, remains a significant challenge. In this study, Pt NPs are incorporated into thioether-functionalized covalent organic frameworks (denoted COF-Sx), enabling precise control over the size and electronic state of Pt NPs by adjusting the thioether density dangling on the COF pore walls. Notably, the resulting Pt@COF-Sx demonstrate exceptional selectivity (>99%) in catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline, in sharp contrast to the poor selectivity of Pt NPs embedded in thioether-free COFs. Furthermore, the conversion over Pt@COF-Sx exhibits a volcano-type curve as the thioether density increases, due to the corresponding change of accessible Pt sites. This work provides an effective approach to regulating the catalysis of metal NPs via their microenvironment modulation, with the aid of rational design and precise tailoring of support structure.

15.
Angew Chem Int Ed Engl ; : e202404271, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700507

RESUMO

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4) ⋅ 4H2O (H2quinha=quinaldichydroxamic acid, HClsal=5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4) ⋅ 3H2O (HClsaldt=4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S=0 to high-spin S=1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

16.
Angew Chem Int Ed Engl ; 63(27): e202401448, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530747

RESUMO

Photogenerated radicals are an indispensable member of the state-of-the-art photochromic material family, as they can effectively modulate the photoluminescence and photothermal conversion performance of radical-induced photochromic complexes. Herein, two novel radical-induced photochromic metal-organic frameworks (MOFs), [Ag(TEPE)](AC) ⋅ 7/4H2O ⋅ 5/4EtOH (1) and [Ag(TEPE)](NC) ⋅ 3H2O ⋅ EtOH (2), are reported. Distinctly different topological networks can be obtained by judiciously introducing alternative π-conjugated anionic guests, including a new topological structure (named as sfm) first reported in this work, describing as 4,4,4,4-c net. EPR data and UV-Vis spectra prove the radical-induced photochromic mechanism. Dynamic photochromism exhibits tunability in a wide CIE color space, with a linear segment from yellow to red for 1, while a curved coordinate line for 2, resulting in colorful emission from blue to orange. Moreover, photogenerated TEPE* radicals effectively activate the near-infrared (NIR) photothermal conversion effect of MOFs. Under 1 W cm-2 808 nm laser irradiation, the surface temperatures of photoproducts 1* and 2* can reach ~160 °C and ~120 °C, respectively, with competitive NIR photothermal conversion efficiencies η=51.8 % (1*) and 36.2 % (2*). This work develops a feasible electrostatic compensation strategy to accurately introduce photoactive anionic guests into MOFs to construct multifunctional radical-induced photothermal conversion materials with tunable photoluminescence behavior.

17.
Proteomics ; 23(2): e2200306, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205637

RESUMO

The majority of people in China have been immunized with the inactivated viral vaccine BBIBP-CorV. The emergence of the Omicron variant raised the concerns about protection efficacy of the inactivated viral vaccine in China. However, longitudinal neutralization data describing protection efficacy against Omicron variant is still lacking. Here we present one-year longitudinal neutralization data of BBIBP-CorV on authentic Omicron, Delta, and wild-type strains using 224 sera collected from 14 volunteers who have finished three doses BBIBP-CorV. The sera were also subjected for monitoring the SARS-CoV-2 specific IgG, IgA, and IgM responses on protein and peptide microarrays. The neutralization titers showed different protection efficacies against the three strains. By incorporating IgG and IgA signals of proteins and Spike protein derived peptide on microarray, panels as potential surrogate biomarkers for rapid estimation of neutralization titers were established. These data support the necessity of the 3rd dose of BBIBP-CorV vaccination. After further validation and assay development, the panels could be used for reliable, convenient and fast evaluation of the efficacy of vaccination.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Imunoglobulina G , Vacinação , Imunoglobulina A , Anticorpos Antivirais
18.
J Neurosci ; 42(23): 4607-4618, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35504726

RESUMO

Ubiquitin-specific protease 2 (USP2) participates in glucose metabolism in peripheral tissues such as the liver and skeletal muscles. However, the glucoregulatory role of USP2 in the CNS is not well known. In this study, we focus on USP2 in the ventromedial hypothalamus (VMH), which has dominant control over systemic glucose homeostasis. ISH, using a Usp2-specific probe, showed that Usp2 mRNA is present in VMH neurons, as well as other glucoregulatory nuclei, in the hypothalamus of male mice. Administration of a USP2-selective inhibitor ML364 (20 ng/head), into the VMH elicited a rapid increase in the circulating glucose level in male mice, suggesting USP2 has a suppressive role on glucose mobilization. ML364 treatment also increased serum norepinephrine concentration, whereas it negligibly affected serum levels of insulin and corticosterone. ML364 perturbated mitochondrial oxidative phosphorylation in neural SH-SY5Y cells and subsequently promoted the phosphorylation of AMP-activated protein kinase (AMPK). Consistent with these findings, hypothalamic ML364 treatment stimulated AMPKα phosphorylation in the VMH. Inhibition of hypothalamic AMPK prevented ML364 from increasing serum norepinephrine and blood glucose. Removal of ROS restored the ML364-evoked mitochondrial dysfunction in SH-SY5Y cells and impeded the ML364-induced hypothalamic AMPKα phosphorylation as well as prevented the elevation of serum norepinephrine and blood glucose levels in male mice. These results indicate hypothalamic USP2 attenuates perturbations in blood glucose levels by modifying the ROS-AMPK-sympathetic nerve axis.SIGNIFICANCE STATEMENT Under normal conditions (excluding hyperglycemia or hypoglycemia), blood glucose levels are maintained at a constant level. In this study, we used a mouse model to identify a hypothalamic protease controlling blood glucose levels. Pharmacological inhibition of USP2 in the VMH caused a deviation in blood glucose levels under a nonstressed condition, indicating that USP2 determines the set point of the blood glucose level. Modification of sympathetic nervous activity accounts for the USP2-mediated glucoregulation. Mechanistically, USP2 mitigates the accumulation of ROS in the VMH, resulting in attenuation of the phosphorylation of AMPK. Based on these findings, we uncovered a novel glucoregulatory axis consisting of hypothalamic USP2, ROS, AMPK, and the sympathetic nervous system.


Assuntos
Glicemia , Neuroblastoma , Sistema Nervoso Simpático , Ubiquitina Tiolesterase , Núcleo Hipotalâmico Ventromedial , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicemia/metabolismo , Glucose/metabolismo , Humanos , Masculino , Camundongos , Norepinefrina/metabolismo , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Sistema Nervoso Simpático/enzimologia , Sistema Nervoso Simpático/metabolismo , Ubiquitina Tiolesterase/metabolismo , Núcleo Hipotalâmico Ventromedial/enzimologia , Núcleo Hipotalâmico Ventromedial/metabolismo
19.
Carcinogenesis ; 44(12): 847-858, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-37787763

RESUMO

OBJECTIVES: To explore the regulatory networks that underlie the development of chemoresistance in bladder cancer. METHODS: We analyzed profiles of differentially expressed long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs) and messenger RNA (mRNAs) in gemcitabine-resistant/sensitive bladder cancer cells using next-generation sequencing data. RESULTS: Hundreds of differentially expressed lncRNAs and miRNAs and thousands of circRNAs and mRNAs were identified. Bioinformatics analysis revealed the chromosomal localizations, classification and coexpression of mRNAs, as well as candidates for cis and trans regulation by lncRNAs. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed mRNAs and circRNAs indicated important functional roles of coregulated RNAs, thus establishing competing endogenous RNA (ceRNA) and protein-protein interactions networks that may underlie chemoresistance in bladder cancer. We demonstrated that lncRNA LINP1 can act as a ceRNA by inhibiting miR-193a-5p to increase TP73 expression; and that lncRNA ESRG and hsa_circ_0075881 can simultaneously bind miR-324-3p to increase ST6GAL1 expression. Modulation of ceRNA network components using ablation and overexpression approaches contributed to gemcitabine resistance in bladder cancer cells. CONCLUSIONS: These results elucidate mechanisms by which lncRNAs and circRNAs coregulate the development of bladder cancer cell resistance to gemcitabine, thus laying the foundation for future research to identify biomarkers and disease targets.


Assuntos
Carcinoma , MicroRNAs , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Gencitabina , RNA Endógeno Competitivo , Bexiga Urinária/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
20.
Cancer Sci ; 114(6): 2375-2385, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36898847

RESUMO

Metastasis is the main death reason for triple-negative breast cancer (TNBC). Thus, identifying the driver genes associated with metastasis of TNBC is urgently needed. CRISPR screens have dramatically enhanced genome editing and made it possible to identify genes associated with metastasis. In this study, we identified and explored the crucial role of ras homolog family member V (RhoV) in TNBC metastasis. Here, we performed customized in vivo CRISPR screens targeting metastasis-related genes obtained from transcriptome analysis of TNBC. The regulatory role of RhoV in TNBC was validated using gain- or loss-of-function studies in vitro and in vivo. We further conducted immunoprecipitation and LC-MS/MS to explore the metastasis mechanism of RhoV. In vivo functional screens identified RhoV as a candidate regulator involved in tumor metastasis. RhoV was frequently upregulated in TNBC and correlated with poor survival. Knockdown of RhoV significantly suppressed cell invasion, migration, and metastasis both in vitro and in vivo. In addition, we provided evidence that p-EGFR interacted with RhoV to activate the downstream signal pathway of RhoV, thereby promoting tumor metastasis. We further confirmed that this association was dependent on GRB2 through a specific proline-rich motif in the N-terminus of RhoV. This mechanism of RhoV is unique, as other Rho family proteins lack the proline-rich motif in the N-terminus.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Cromatografia Líquida , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Espectrometria de Massas em Tandem , Neoplasias de Mama Triplo Negativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA