Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401806, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789386

RESUMO

The particular reactivity of the recently discovered class of the main group element polyhedral clusters, pyramidanes, remains largely unexplored. In this communication, we report the reaction of the germapyramidane with tert-butyllithium leading to the rather unusual organogermanium compound [Li+(thf)2]⋅2-, as the product of the formal insertion of a Ge-apex into the C-Li bond. This reactivity mode exemplifies unusual electrophilic behaviour of a pyramidane, which is a priori considered as a nucleophilic reagent. Being highly reactive, [Li+(thf)2]⋅2- readily undergoes reactions with electrophiles (MeI, EtBr), initially forming intermediate germahousenes, which isomerize to the thermodynamically more favourable germoles.

2.
J Phys Chem A ; 125(30): 6562-6570, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34310142

RESUMO

Polycyclic aromatic hydrocarbons are of special interest due to their promising nonlinear optical and magnetic properties. A series of acene-linked zethrenes and bisphenalenyls comprising from five to nine benzene rings in the linker group have been computationally studied by the DFT UB3LYP/6-311++G(d,p) quantum-chemical modeling of their electronic structure, possible spin states, and exchange interactions. The zethrenes with octacene and nonacene linkers as well as bisphenalenyls comprising heptacene, octacene, and nonacene linker groups have been revealed to possess tetraradicaloid nature, which makes them promising building blocks for organic optoelectronic and spintronic devices. The results obtained open a way of constructing tetraradicaloid organic molecules characterized by the presence of two types of paramagnetic centers.

3.
J Phys Chem A ; 125(30): 6556-6561, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34291645

RESUMO

The structural, mechanical, electrical, and optical properties of new supertetrahedral structures cF-Ga4X (X = C, Si) were studied by using a solid state DFT calculation. The crystal structures of cF-Ga4X are built based on a diamond crystal lattice, in which pairs of adjacent carbon atoms are replaced by Ga4X fragments, where Ga4 is a tetrahedron of gallium atoms. Calculations have shown that new mixed-type supertetrahedral structures are dynamically stable, have densities of 3.49 g/cm3 (X = C) and 2.65 g/cm3 (X = Si), and are narrow band gap semiconductors. From the performed molecular dynamics calculations, it follows that the homogeneous melting temperature of the gallium-carbon structure is in the range from 600 to 700 K and that of the gallium-silicon structure is in the range from 400 to 500 K.

4.
J Comput Chem ; 41(15): 1456-1463, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32176381

RESUMO

The structure and properties of two-dimensional phosphoborane sheets were computationally investigated using Density Functional Theory calculations. The calculated phonon spectrum and band structure point to dynamic stability and allowed characterization of the predicted two-dimensional material as a direct-gap semiconductor with a band gap of ~1.5 eV. The calculation of the optical properties showed that the two-dimensional material has a relatively small absorptivity coefficient. The parameters of the mechanical properties characterize the two-dimensional phosphoborane as a relatively soft material, similar to the monolayer of MoS2 . Assessment of thermal stability by the method of molecular dynamics indicates sufficient stability of the predicted material, which makes it possible to observe it experimentally.

5.
Phys Chem Chem Phys ; 22(3): 1288-1298, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31850434

RESUMO

A series of neutral triangular polycyclic aromatic hydrocarbons functionalized with various radical groups (dithiadiazolyl, verdazyl, nitronylnitroxyl, tert-butyl-nitroxyl and also (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) has been computationally studied by the DFT UB3LYP/6-311++G(d,p) quantum-chemical modelling of their electronic structure and magnetic properties. The dependence of the nature and strength of the exchange interactions between paramagnetic centers on the size of the triangular core, the presence of heteroatoms in the polycyclic moiety, the type of the radical substituents and their spatial arrangement has been ascertained. The molecules with the high-spin electronic ground state possessing strong ferromagnetic exchange interactions and virtually non-interacting paramagnetic centers have been revealed, which makes them promising building blocks for organic spintronics devices.

6.
Beilstein J Org Chem ; 16: 1820-1829, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765797

RESUMO

2-Benzo[b]thienyl fulgides and fulgimides containing bulky diphenylmethylene substituents were synthesized in the form of their ring-opened E- or Z-isomers. In contrast to the majority of known fulgides/fulgimides, that form colored ring-closed structures under UV irradiation, the obtained compounds undergo an irreversible transformation leading to decoloration of their solutions. This rearrangement with the formation of the dihydronaphthalene core appeared to be by 2-3 orders of magnitude more efficient than for the known diphenylmethylene(aryl(hetaryl))fulgides. The molecular structures of E- and Z-isomers and of products of the photoinduced rearrangement completed by 1,5-H shift reaction, 3a,4-dihydronaphtho[2,3-c]furans(pyrroles) C, were established based on the data of 1H and 13C NMR spectroscopy and X-ray diffraction studies.

7.
J Comput Chem ; 40(26): 2284-2292, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31228286

RESUMO

A series of coordination compounds of redox-active 1,10-phenanthroline-5,6-diimine with CoII bis-diketonates and FeII dihydrobis(pyrazolyl)borates has been computationally designed by means of density functional theory (DFT UB3LYP*/6-311++G(d,p)) calculations of their electronic structure, energy characteristics, and magnetic properties. Four types of complexes differing by the nature and position of the terminal metal-centered fragments have been considered. The performed systematic calculations have revealed the systems capable of undergoing thermally initiated spin-state switching rearrangements, including those governed by the synchronized mechanisms of spin crossover and valence tautomerism. The predicted magnetic characteristics allow one to consider the dinuclear cobalt complexes and heterometallic Co/Fe compounds with 1,10-phenanthroline-5,6-diimine as building blocks for molecular and quantum electronics devices. © 2019 Wiley Periodicals, Inc.

8.
J Comput Chem ; 40(20): 1861-1865, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30957253

RESUMO

A new metastable crystalline form of gallium has been computationally designed using density functional calculations with imposing periodic boundary conditions. The geometric and electronic structures of the predicted new allotrope were calculated on the basis of a diamond lattice in which all carbon atoms are replaced by gallium Ga4 tetrahedra. This form does not have any imaginary phonons, thus it is a metastable crystalline form of gallium. The new form of gallium is a metal and shows high plasticity and low-melting temperature. Molecular dynamics simulations show that this form of gallium will melt at about 273 K with a sharp increase in temperature in the system during the melting process from 273 to 1800 K. This melting process is very different from conventional melting, where temperature stays the same until complete melting. That unusual melting can be explained by the fact that supertetrahedral gallium is a metastable structure that has an excess of strain energy released during melting. If made this new material may find many useful applications as a new low density metal with stored internal energy. © 2019 Wiley Periodicals, Inc.

9.
Phys Chem Chem Phys ; 21(36): 19764-19771, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31475283

RESUMO

Among the diversity of new materials, two-dimensional crystal structures have been attracting significant attention from the broad scientific community due to their promising applications in nanoscience. In this study we predict a novel two-dimensional ferromagnetic boron material, which has been exhaustively studied with DFT methods. The relaxed structure of the 2D-B6 monolayer consists of slightly flattened octahedral units connected with 2c-2e B-B σ-bonds. The calculated phonon spectrum and ab initio molecular dynamics simulations reveal the thermal and dynamical stability of the designed material. The calculation of the mechanical properties indicate a relatively high Young's modulus of 149 N m-1. Moreover, the electronic structure indicates the metallic nature of the 2D-B6 sheets, whereas the magnetic moment per unit cell is found to be 1.59 µB. The magnetism in the 2D-B6 monolayer can be described by the presence of two unpaired delocalized bonding elements inside every distorted octahedron. Interestingly, the nature of the magnetism does not lie in the presence of half-occupied atomic orbitals, as was shown for previously studied magnetic materials based on boron. We hope that our predictions will provide promising new ideas for the further fabrication of boron-based two-dimensional magnetic materials.

10.
J Phys Chem A ; 123(1): 267-271, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30550281

RESUMO

New metastable crystalline forms of the supertetrahedral Al4X (X = B, C, Al, Si) solids have been computationally designed using density functional theory calculations with imposing of periodic boundary conditions. The geometric and electronic structures of the predicted new systems were calculated on the basis of the diamond lattice in which all carbon atoms are replaced by the Al4X structural units, where X is boron, carbon, aluminum, and silicon atoms. The calculations showed that the dynamic stability of the Al4X crystal structures critically depends on the nature of the bridging atom X: supertetrahedral Al4C and Al4Si solids are dynamically stable, whereas Al4B and Al4Al ones are unstable.

11.
J Am Chem Soc ; 140(19): 6053-6056, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29669416

RESUMO

Nonclassical pyramidanes with their inverted tetrahedral configuration of the apical atom are among the most challenging synthetic targets in cluster chemistry. In this Communication, we report on the synthesis and structure of the first representative of pyramidal compounds with the group 13 element at the apex, namely, chloroborapyramidane 2. Reduction of 2 with excess of lithium metal unexpectedly produced the cage-opening product, borole dianion derivative {32-·[Li(thf)+]2}, a 6π-electron aromatic system.

12.
Phys Chem Chem Phys ; 20(44): 27830-27837, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30387486

RESUMO

With the help of DFT calculations the possibility of stabilizing non-standard flat conformations of cyclooctatetraene and cyclodecapentaene by equatorially located metalcarbonyl substituents has been predicted. Structures and stabilities of a new family of metalcarbonyl Cr(CO)5, Fe(CO)4, Ni(CO)3, Ti(CO)4, and Ni(CO)2 cyclooctatetraene and cyclodecapentaene derivatives have been studied. All cyclooctatetraene derivatives, except the Ti(CO)4 derivative, have planar structures and are characterized by the pronounced anti-aromaticity of the core cycle. In the case of cyclodecapentaene complexes, the planar structures are formed by only Fe(CO)4 and Ni(CO)3 derivatives. Stabilization of non-standard planar forms is caused by both sterically enforced flattening of the core cycles and their π-interactions with metalcarbonyl moieties.

13.
J Am Chem Soc ; 139(39): 13897-13902, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28892377

RESUMO

Strained hydrocarbons constitute one of the most prominent classes of organic compounds. Among them, bicyclo[2.1.0]pentene ("housene") derivatives represent a highly challenging and very attractive class. Although organic housenes have been known for more than five decades, there are still very few of them containing heavier main group elements. In this paper, we report on the two housene-type structures, novel monomeric stibahousene and dimeric bis(stibahousene). The bonding natures of both compounds were approached from both experimental and computational directions to reveal their peculiar structural features.

14.
Angew Chem Int Ed Engl ; 56(34): 10118-10122, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28402596

RESUMO

With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two- and three-dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two- and three-layer systems resulted in the construction of a three-dimensional supertetrahedral borane crystal structure. The two-dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three-dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm-3 ) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials.

15.
Chemistry ; 22(49): 17585-17589, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27775186

RESUMO

Pyramidanes C[C4 R4 ] constitute a novel class of highly strained and reactive polyhedral clusters that attracted a great deal of attention of both theoreticians and experimentalists. Although well-studied from the theoretical viewpoint, pyramidanes were synthetically inaccessible, and only very recently their very first isolable representatives have been described. In this Communication, we report on the synthesis and structural studies of the cationic pyramidane with the Group 15 element at the apex, namely, phosphapyramidane, an isoelectronic analogue of the neutral pyramidanes of the Group 14 elements.

16.
Phys Chem Chem Phys ; 18(27): 17822-6, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27326937

RESUMO

For metal-based compounds, the ground- and excited-state dipole moments and the difference thereof are, for the first time, obtained both experimentally and theoretically using solvatochromic equations and DFT/B3LYP/QZVP calculations. The approach is suggested to be promising and easily accessible, and can be universal to elucidate the electronic properties of metal-based compounds.

17.
J Comput Chem ; 36(29): 2193-9, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26393417

RESUMO

A series of germanium-containing triangular molecules have been studied by density functional theory (DFT) calculations. The triangulene topology of the compounds provides for their high-spin ground states and strong sign alternation of spin density and atomic charge distributions. High values of the exchange coupling constants witness ferromagnetic ordering of electronic structures of all studied triangulenes. The compounds bearing more electronegative atoms in a-positions of the triangular networks possess higher aromatic character and stronger ferromagnetic ordering.

18.
J Fluoresc ; 25(3): 763-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822191

RESUMO

Novel donor-π-acceptor dyes bearing the pyrimidine unit as an electron-withdrawing group have been synthesized by using combination of two processes, based on the microwave-assisted Suzuki cross-coupling reaction and nucleophilic aromatic substitution of hydrogen. Spectral properties of the obtained dyes in six aprotic solvents of various polarities have been studied by ultraviolet-visible and fluorescence spectroscopy. In contrast to the absorption spectra, fluorescence emission spectra displayed a strong dependence from their solvent polarities. The nature of the observed long wavelength maxima has been elucidated by means of quantum chemical calculations. The electrochemical properties of these dyes have been investigated by using cyclic voltammetry, while their photovoltaic performance was evaluated by a device fabrication study. The experimental and calculation data show that all of the dyes can be regarded as potentially good photosensitizers for dye-sensitized solar cells.

19.
Angew Chem Int Ed Engl ; 54(47): 14118-22, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26403356

RESUMO

Compact and highly reactive bicyclo[1.1.0]butanes constitute one of the most fascinating classes of organic compounds. Furthermore, interplay of bicyclo[1.1.0]butanes with their valence isomers, such as buta-1,3-dienes and cyclobutenes, is among the fundamental pericyclic transformations in organic chemistry. Herein we report the back-and-forth interconversion between the cyclotrisilenes and thiatrisilabicyclo[1.1.0]butanes, allowing for the synthesis of novel representatives of such classes of highly reactive organometallics. The peculiar structural and bonding features of the newly synthesized compounds, as well as the mechanism of their isomerization, were verified both experimentally and computationally.

20.
Angew Chem Int Ed Engl ; 54(5): 1476-80, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25475055

RESUMO

Theoretical investigations to evaluate the viability of extended nonmetal atom chains on the basis of molecular models with the general formula Mn F4n+2 (M=S and Se) and corresponding solid-state systems exhibiting direct SS or SeSe bonding were performed. The proposed high-symmetry molecules were found to be minima on the potential energy surface for all Sn F4n+2 systems studied (n=2-9) and for selenium analogues up to n=6. Phonon calculations of periodic structures confirmed the dynamic stability of the -(SF4 -SF4 )∞ - chain, whereas the analogous -(SeF4 -SeF4 )∞ - chain was found to have a number of imaginary phonon frequencies. Chemical bonding analysis of the dynamically stable -(SF4 -SF4 )∞ - structure revealed a multicenter character of the SS and SF bonds. A novel definition and abbreviation (ENAC) are proposed by analogy with extended metal atom chain (EMAC) complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA