Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35591688

RESUMO

In this article, the depositions and functional characterizations of Ta-N and Ta-Al-N coatings for protection purposes, grown by reactive high-power impulse magnetron sputtering onto silicon substrates, are described. Nitride films were grown while changing the substrate polarization voltage (i.e., the applied bias voltage) during the process. Moreover, the effects of adding Al to form a ternary system and the resulting variation of the coatings' mechanical and tribological properties have been widely investigated by nanoindentation, scratch, and wear tests. Micro-Raman characterization has been applied to the wear tracks to explore the comprehensive tribo-environment and wear mechanism. Interestingly, Ta-Al-N films, despite significantly improved mechanical properties, show a premature failure with respect to Ta-N coatings. The wear mechanisms of Ta-N and Ta-Al-N systems were revealed to be very different. Indeed, Ta-Al-N films suffer higher oxidation phenomena during wear, with the formation of an oxidized surface tribofilm and a reduced wear resistance, while Ta-N coatings undergo plastic deformation at the wear surface, with a slightly adhesive effect.

2.
Membranes (Basel) ; 12(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629857

RESUMO

In this work, the infiltration of TiN powders by electrophoretic deposition (EPD) in aqueous media was considered as alternative method to reduce the size craters and the roughness of commercial porous Ti substrates. Ti substrates can be used as suitable supports for the deposition of dense hydrogen separation TiNx-based membranes by physical vapor deposition (PVD) techniques. The influence of various EPD deposition parameters on surface morphology and roughness of TiN-infiltrated substrates were investigated in order to optimize their surface properties. The results suggest that a multi-step EPD procedure is an effective technique for reducing substrate surface defects of commercial porous Ti substrates which could then be successfully used as proper supports for the deposition of dense and defect-free TiNx layers, also aligning the thermal mismatch between the active layer and the porous substrate.

3.
Membranes (Basel) ; 11(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063392

RESUMO

This scientific work aims to optimize the preparation of titanium nitride coatings for selective H2 separation using the Reactive High Power Impulse Magnetron Sputtering technology (RHiPIMS). Currently, nitride-based thin films are considered promising membranes for hydrogen. The first series of TiNx/Si test samples were developed while changing the reactive gas percentage (N2%) during the process. Obtained coatings were extensively characterized in terms of morphology, composition, and microstructure. A 500 nm thick, dense TiNx coating was then deposited on a porous alumina substrate and widely investigated. Moreover, the as-prepared TiNx films were heat-treated in an atmosphere containing hydrogen in order to prove their chemical and structural stability; which revealed to be promising. This study highlighted how the RHiPIMS method permits fine control of the grown layer's stoichiometry and microstructure. Moreover, it pointed out the need for a protective layer to prevent surface oxidation of the nitride membrane by air and the necessity to deepen the study of TiNx/alumina interface in order to improve film/substrate adhesion.

4.
J Phys Chem A ; 114(16): 5295-8, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20373795

RESUMO

Room-temperature results of cathodoluminescence (CL) spectroscopy investigations are presented for nanostructured titanium dioxide (anatase) thin films (500 nm thick) deposited via RF magnetron sputtering on high-purity silica substrates. The collected CL bands of the anatase thin films, as deposited and after different annealing cycles, showed a broad morphology consisting of three Voigtian bands located at 500, 550, and 610 nm that were partially overlapping. The overall CL emission increased with increasing temperature and time of the annealing cycle as a consequence of the increased crystallinity of the thin film. A clear trend was found for the oxygen-vacancy-related band (located at 610 nm), whose relative intensity decreased, as compared with the as-grown sample, after annealing in air; the higher the annealing temperature, the lower the relative intensity. We evaluated the photoactivity of the nanostructured thin film samples by measuring their photocatalytic activity in aqueous solution toward the degradation of phenol. A relationship between the decrease in oxygen vacancy concentration as a consequence of the annealing and the increase in the photoactivity was highlighted.


Assuntos
Medições Luminescentes/métodos , Membranas Artificiais , Nanoestruturas/química , Titânio/química , Catálise , Fotoquímica , Dióxido de Silício/química
5.
Rev Sci Instrum ; 87(2): 02B314, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26932042

RESUMO

This contribution regards the Radio Frequency (RF) transmission line of the Megavolt ITER Injector and Concept Advancement (MITICA) experiment. The original design considered copper coaxial lines of 1″ 5/8, but thermal simulations under operating conditions showed maximum temperatures of the lines at regime not compatible with the prescription of the component manufacturer. Hence, an optimization of the design was necessary. Enhancing thermal radiation and increasing the conductor size were considered for design optimization: thermal analyses were carried out to calculate the temperature of MITICA RF lines during operation, as a function of the emissivity value and of other geometrical parameters. Five coating products to increase the conductor surface emissivity were tested, measuring the outgassing behavior of the selected products and the obtained emissivity values.

6.
Materials (Basel) ; 9(12)2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-28774082

RESUMO

A High Power Impulse Magnetron Sputtering (HiPIMS) method for depositing TiAlN environmental barrier coatings on the surface of Ti-48Al-2Cr-2Nb alloy was developed in view of their exploitation in turbine engines. Three differently engineered TiAlN films were processed and their performance compared. Bare intermetallic alloy coupons and coated specimens were submitted to thermal cycling under oxidizing atmosphere up to 850 °C or 950 °C, at high heating and cooling rates. For this purpose, a burner rig able to simulate the operating conditions of the different stages of turbine engines was used. Microstructures of the samples were compared before and after each test using several techniques (microscopy, XRD, and XPS). Coating-intermetallic substrate adhesion and tribological properties were investigated too. All the TiAlN films provided a remarkable increase in oxidation resistance. Good adhesion properties were observed even after repeated thermal shocks. HiPIMS pretreatments of the substrate surfaces performed before the coating deposition significantly affected the oxidation rate, the oxide layer composition and the coating/substrate adhesion.

7.
Ann Chim ; 95(6): 395-403, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16136834

RESUMO

Among solid oxides exploited to prepare efficient fuel cells, La(1-x)SrxMnO3 manganites have been widely studied and used as cathodes, because of their high conductivity at the working temperatures, good thermal stability and compatibility with other cell components. A fundamental goal in solid oxide fuel cells technology consists in lowering the normal operating temperatures, e.g. increasing the surface/volume ratio of electrodic materials, so as to enhance their catalytic performances. In this work, the preparation of high surface area La(1-x)SrxMnO3 (x approximately 0.3) films on silicon wafers by the nitrate-citrate Pechini process is described. The films were characterized by X-ray diffraction, Atomic Force Microscopy and Secondary Ion Mass Spectrometry. Good quality nanostructured perovskite-type films were obtained. SIMS methodology enabled to show the surface and in-depth coatings composition and residual contaminants. Moreover, it allowed defining the best synthesis conditions for complete in-depth decomposition of precursors and obtaining homogeneously thick coatings.


Assuntos
Fontes de Energia Bioelétrica , Compostos de Manganês/química , Nanoestruturas , Espectrometria de Massas , Microscopia de Força Atômica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA